
Advanced Computer Architecture

高级计算机体系结构

第14讲：Memory (1)
张献伟

xianweiz.github.io
DCS5637, 11/30/2022

https://xianweiz.github.io/

Review Questions
• explain SM or CU.

• relationship of kernel and grid?

• steps of kernel launch?

• stream in GPU?

• MPS?

• shared memory in GPU?

2

Threads to execute the kernel are organized as a grid.

software abstraction of queue, path to transmit tasks from CPU

multi-process service to run multi processes on GPU

The fundamental compute unit to execute GPU tasks, hosting
multiple simple cores to run the threads

User-mode queue, command processor, blocks to SM, warps

software-controlled L1 cache in SM, fast data share within block

Multi-chip Module
• Aggregating multiple GPU modules within a single

package, as opposed to a single monolithic die.
• AMD: Chiplet GPUs

− MI200: 220 compute units, 14K streaming cores
− MI100: 120 compute units, 7680 streaming cores

• Nvidia: Multi-Chip-Module (MCM) GPUs
− Hopper (Ampere -> Lovelace): 300+ SMs, 40K+ CUDA cores
− A100: 128 SMs, 8192 CUDA cores

3

High-speed Links[高速连接]

• GPUs are of high compute capability, being bottlenecked
on data movement
• High-speed interconnect to achieve significantly higher

data movement
− Nvidia: NVLink
− AMD: Infinity Fabric
− Intel: Compute eXpress Link (CXL)

4

Summary of DLP/GPU[总结]

• Data level parallelism
− SIMD: operates on multiple data with on single instruction

p AVX-512 on Intel CPU is the typical example
− SIMT: consists of multiple scalar threads executing in a SIMD

manner
p GPU is the example with threads executing the same instruction

• GPU hardware and thread organization
− Device à SM à SIMD/Partition à Core
− Grid à Block à Warp à Thread

• GPU programming
− Streams to support concurrency
− Memory hierarchy and usage (thread, cache/smem, global)
− Advanced topics: virtualization, profiling/tuning, divergence, etc

5

6

Part-I: Memory Hierarchy

Memory Access[存储访问]

7

Program counter

Fetch

Decode

Execute

Memory

Writeback

Next instruction

Memory

• Programmer’s view: read/write (i.e., load/store)
− Instruction[指令]
− Data[数据]

Memory[存储]

• Ideal memory[理想情况]
− Zero access time (latency)[零时延]
− Infinite capacity[无限容量]
− Zero cost[零成本]
− Infinite bandwidth (to support parallel accesses)[无限带宽]

• Problem: the requirements are conflicting[问题：需求互斥]
− Bigger is slower[大容量à长时延]

p Longer time to determine the location
− Faster is more expensive[快访问à高成本]

p More advanced technology
− Higher bandwidth is more expensive[高带宽à高成本]

p More access ports, higher frequency, …

8

Memory in Modern System

9

Memory Hierarchy[存储层级]

10

• Goal: provide a memory system with a cost per bit that is
almost as low as the cheapest level of memory and a
speed almost as fast as the fastest level

Memory Hierarchy (cont.)

11

Memory Wall[存储墙]

• On modern machines, most programs that access a lot of
data are memory bound

− Latency of DRAM access is roughly 100-1000 cycles
− Involves both the limited capacity and the bandwidth of

memory transfer

12

Deeper Hierarchy[更深层级]

• 1980: no cache in micro-processor
• 1989: Intel 486 processor with 8KB on-chip L1 cache
• 1995: Intel Pentium Proc with 256KB on-chip L2 cache
• 2003: Intel Itanium 2 with 6MB on-chip L3 cache
• 2010: 3-level cache on chip, 4th-level cache off chip

13

14

Part-II: Cache

Cache Basics[缓存基础]

• Block (line): unit of storage in the cache[缓存单位]
− Memory is logically divided into cache blocks that map to

locations in the cache
• When data referenced[使用]

− HIT: if in cache, use cached data instead of accessing memory
− MISS: if not in cache, bring block into cache

p Maybe have to kick something else out to do it

• Some important cache design decisions
− Placement[放置]: where and how to place/find a block in cache?
− Replacement[替换]: what data to remove to make room in

cache?
− Granularity of management[粒度]: large, small, uniform blocks?
− Write policy[写策略]: what do we do about writes?
− Instructions/data[指令/数据]: do we treat them separately?

15

Cache Basics (cont.)
• Memory is logically divided into fixed-size blocks
• Each block maps to a location in the cache, determined

by the index bits in the address
− Used to index into the tag and data stores

• Cache access steps
− 1) index into the tag and data stores with index bits in address
− 2) check valid bit in tag store
− 3) compare tag bits in address with the stored tag in tag store

• If a block is in the cache (cache hit), the stored tag should
be valid and match the tag of the block

16

Cache Basics (cont.)
• Assume byte-addressable memory

− Capacity: 256 bytes à 8-bit address
− Block: 8 bytes à 3-bit offset
− #blocks: 32 (256/8)

• Assume cache
− Capacity: 64 bytes à 3-bit index

p Holding 8 blocks (64/8)

• What is a tag store?
− Tag
− Metadata

p Valid bit
p Replacement policy bits
p Dirty bit
p ECC

17

Tag Index Offset

TagV

=?

Data

MUX

HIT/MISS DATA

MUX: multiplexer (数据选择器)

Cache Organization
• Direct mapped

− For each item (block) of data in
memory, there is exactly one
location in the cache where it
might be

• Set associative
− associative memory within the set

• Fully associative

18

=?

Tag store

V tag

Address

tag index offset
3 bits3 bits2b Data store

MUX offset

Hit? Data

Tag store Data store

V tag

=?

V tag

=?

Logic

MUX

MUX
offset

SET
（2-way）

Hit?

Tag store

Data store

=? =? =? =? =? =? =? =?

MUX

MUX
byte in block

Logic

Hit?

Evaluation Metrics[评价指标]

• Cache hit ratio
− (# hits) / (# hits + # misses) = (# hits) / (# accesses)

• Average memory access time (AMAT)
− (hit-ratio * hit-latency) + (miss-ratio * miss-latency)

• Cache hit rate: # of misses per kilo instructions (MPKI)

19

Example: Assume that
Processor speed = 1 GHz (1 n.sec. clock cycle)
Cache access time = 1 clock cycle
Miss penalty = 100 n.sec (100 clock cycles)
I-cache miss ratio = 1%, and D-cache miss ratio = 3%
74% of memory references are for instructions and 26% for data

Effective cache miss ratio = 0.01 * 0.74 + 0.03 * 0.26 = 0.0152
Av. (effective) memory access time = 1 + 0.0152 * 100 = 2.52 cycles = 2.52 n.sec

Cache Misses: 3 Cs
• Compulsory/Cold[强制性未命中]

− First access to a block which is not in the cache
p The block must be brought into the cache

− Cache size does not matter
− Solution: prefetching

• Capacity[容量性未命中]
− Cache cannot contain all bocks needed during program

execution
p Blocks are evicted and later retrieved

− Solution: increase cache size, stream buffers
• Conflict[冲突性未命中]

− Occurs in set associative or direct mapped caches when too
many blocks are mapped to the same set

− Solution: increase associativity, victim cache
p No conflict misses in fully associative cache

20
https://www.slideserve.com/thomashenry/computer-architecture-cache-memory-powerpoint-ppt-presentation

Coherence (invalidation) misses:
other process updates memory

https://www.slideserve.com/thomashenry/computer-architecture-cache-memory-powerpoint-ppt-presentation

To Optimize Cache[优化缓存]

• Average memory access time (AMAT) = (hit-rate * hit-
latency) + (miss-rate * miss-latency)

• Basic requirements
− Hit latency
− Miss rate
− Miss penalty

• Two more requirements
− Cache bandwidth
− Power consumption

21

Advanced Cache Optimizations[优化]

• Reducing the hit time[缩短命中时延]
− Small and simple first-level caches
− Way prediction

• Increasing cache bandwidth[提高缓存带宽]
− Pipelined caches
− Multibanked caches
− Non-blocking caches

• Reducing miss penalty[降低不命中开销]
− Critical word first
− Merging write buffers

• Reducing miss rate[降低不命中率]
− Compiler optimizations

22

#1: Small & Simple 1st-level Cache[小]

• To reduce hit time and power
• The L1 cache size has recently increased either slightly or

not at all
− Limited size: pressure of both a fast clock cycle and power

limitations encourages small sizes
− Lower level of associativity: reduce both hit time and power

23

#2: Way Prediction[预测]

• To reduce hit time
− Add extra bits in the cache to predict the way of the next cache

access
p Block predictor bits

− Multiplexor is set early to select the desired block
p And in that clock cycle, only a single tag comparison is performed in

parallel with reading the cache data
− A miss results in checking the other blocks for matches in the

next clock cycle
• Miss-prediction gives longer hit time

− Prediction accuracy
p > 90% for two-way
p > 80% for four-way
p I-cache has better accuracy than D-cache

− First used on MIPS R10000 in mid-90s,
now used on ARM Cortex-A8

24

#3: Pipelined[流水线]

• To increase bandwidth
− Primarily target at L1, where access bandwidth constrains

instruction throughput
− Multibanks are also used in L2/L3, but mainly for power

• Pipelining L1
− Stages

p address calculation
p disambiguation (decoder)
p cache access (parallel tag and data)
p result drive (aligner)

− Allows a higher clock cycle, at the cost of increased latency
− Examples

p Pentium: 1 cycle, Pentium Pro – III: 2, Pentium 4 – Core i7: 4 cycles

25

#3: Multibanked[多单元]

• Organize cache as independent banks to support
simultaneous access

− ARM Cortex-A8 supports 1-4 banks for L2
− Intel i7 supports 4 banks for L1 and 8 banks for L2

• Interleave banks according to block address
− Banking works best when the accesses naturally spread across

banks

• Multiple banks also are a way to reduce power
consumption in both caches and DRAM

26

#4: Nonblocking Caches[非阻塞]

• To increase cache bandwidth
• Allow hits before previous misses complete

− “Hit under miss”
− “Hit under multiple miss”

• Nontrivial to implement the nonblocking
− Arbitrating contention between hits and misses; tracking

outstanding misses
− Miss Status Handling Registers (MSHRs)

27

Blocking

Hit under miss

#5: Critical Word First & Early Restart
• To reduce miss penalty
• Processor normally needs just one word of the block at a

time
− Don’t wait for the full block to be loaded before sending the

requested word and restarting the processor
• Critical word first[关键字优先]

− Request missed word from memory first
− Send it to the processor as soon as it arrives

• Early restart[提早重启]
− Request words in normal order
− Send missed work to the processor as soon as it arrives

• Effectiveness depends on block size and likelihood of
another access to the portion of the block that has not
yet been fetched

28

#6: Merging Write Buffers[写缓冲合并]

• To reduce miss penalty
• When storing to a block that is already pending in the

write buffer, update write buffer
• Advantages

− Multiword writes are usually faster than writes one word a time
− Reduces stalls due to full write buffer

• Do not apply to I/O addresses[I/O设备]

29

No write buffering

Write buffering

#7: Compiler Optimizations[编译]

• To reduce miss rate, without any hardware changes
• Loop interchange

− Swap nested loops to access memory in sequential order
− Improving spatial locality

p Maximizes use of data in a cache block before they are discarded

30

/* Before */
for (j = 0; j < 100; j = j + 1)

for (i = 0; i < 5000; i = i + 1)
x[i][j] = 2 * x[i][j];

/* After */
for (i = 0; j < 5000; i = i + 1)

for (j = 0; j < 100; j = j + 1)
x[i][j] = 2 * x[i][j];

#7: Compiler Optimizations (cont’d)
• Blocking to reduce cache misses

− Instead of accessing entire rows or columns, subdivide matrices
into blocks

− Exploits a combination of spatial and temporal locality, and can
even help register allocation

31

#8: Hardware Prefetching[硬件预取]

• To reduce miss penalty or miss rate
• Prefetch items before the processor requests them

− Instruction: fetches two blocks on miss, the requested and the
next consecutive

− Data: prefetch predicted blocks

32

#8: Hardware Prefetching (cont’d)
• What to prefetch? (prefetch useful data)

− Next sequential
− Stride
− General pattern

• Where to place?
− Directly into caches
− External buffers

• When to prefetch?
− Prefetched data should be timely provided

• Prefetching relies on extra memory bandwidth
− Should not interfere much with demand accesses
− Otherwise it hurts performance

33

#9: Compiler-controlled Prefetching
• To reduce miss penalty or miss rate
• Compiler inserts prefetch instructions to request data

before the processor needs it
• Two flavors

− Register prefetch: loads the value into a register
− Cache prefetch: loads data into the cache

• Typically nonfaulting prefetches
− Simply turns into no-ops if they would normally result in an

exception

• Compilers must take care to gain performance
− Issuing prefetch instructions incurs an instruction overhead

34

#10: Use HBM[高带宽内存]

• Use HBM to build massive L4 caches, size of 128MB - 1GB
• Tags of HBM cache

− 64B block: 1GB L4 requires 94MB of tags
p Issue: cannot place in on-chip caches

− 4KB block: 1GB L4 requires <1MB tag
p Issues: inefficient use of huge blocks, and high transfer overhead

• One approach (L-H, MICRO’2011):
− Each SDRAM row is a block index
− Each row contains set of tags and 29 data segments
− 29-set associative

35

2KB row buffer = 32 cache lines
Data lines (29-ways)Tags

Miss
Map

Summary

36

37

Part-III: Main Memory

Virtual vs. Physical Caches
• Cache works on virtual addresses

• Cache works on physical addresses

38

CPU MMU Cache Main
Memory

addr

data

CPU MMUCache Main
Memory

addr

data

Address Translation[地址转换]

• Address Translation: the hardware converts virtual
addresses into physical addresses via an OS-managed
lookup table (page table)
• HW and SW cooperatively manage the translation

− OS software
− Address translation hardware in MMU
− Page tables stored in physical memory or disk

• Memory management unit[内存管理单元]
− Includes Page Table Base Register(s), TLBs, page walkers

39

Address Translation (cont.)
• A virtual page is mapped to

− A physical frame, if the page is in physical memory
− A location in disk, otherwise

• If an accessed virtual page is not in memory, but on disk
− Virtual memory system brings the page into a physical frame

and adjusts the mapping à this is called demand paging

40

Intel Xeon Max

41

https://www.servethehome.com/intel-xeon-max-
cpu-is-the-sapphire-rapids-hbm-line/

https://www.tomshardware.com/news/intel-fires-
up-xeon-max-cpus-gpus-to-rival-amd-nvidia

https://www.intel.com/content/www/us/en/newsr
oom/news/introducing-intel-max-series-product-
family.html#gs.iub4p3

https://www.servethehome.com/intel-xeon-max-cpu-is-the-sapphire-rapids-hbm-line/
https://www.intel.com/content/www/us/en/newsroom/news/introducing-intel-max-series-product-family.html

Memory Technology[存储技术]

• Performance of main memory
– Latency: affects Cache Miss Penalty
– Bandwidth: affects I/O & Large Block Miss Penalty

42

DRAM vs. SRAM
• Main Memory uses DRAM: Dynamic Random Access

Memory
− Needs to be refreshed periodically (one row at a time)
− Addresses divided into 2 halves (memory as a 2D matrix):

p RAS or Row Access Strobe
p CAS or Column Access Strobe

• Cache uses SRAM: Static RAM
− No refresh (6 transistors/bit vs. 1)

p Size: DRAM/SRAM 4-8
p Cost/Cycle time: SRAM/DRAM 8-16

43

DRAM
• History

− 1966: Invented by Robert Dennard of IBM
− 1967: DRAM patent was filed (issued 1968)
− 1970: Intel built 1Kb DRAM chip (3T cell)
− ~1975: 4Kb DRAM chip (1T cell)

• SDRAM = DRAM with a clocked interface
• DDR SDRAM = double data rate, transfer data at both

clock edges
− DDR1 (2.5 V, 200-400 MHz)
− DDR2 (1.8 V, 400-1066 MHz)
− DDR3 (1.5 V, 800-2133 MHz)
− DDR4 (1.2 V, 1600-5333 MHz)
− DDR5 (1.1 V, 3200-6400 MHz)

44

“I knew it was going to be a big thing,
but I didn’t know it would grow to have
the wide impact it has today.”

https://www.ibm.com/ibm/history/ibm100/us/en/icons/dram/

Dennard Scaling Law: as transistors shrank, so did necessary voltage
and current; power is proportional to the area of the transistor

https://www.ibm.com/ibm/history/ibm100/us/en/icons/dram/

DRAM Structure[结构]

• DRAM is provided as DIMMs, which contain a bunch of
chips on each side
• DRAM chip can be thought of as 2D array
• Each intersection in the array is one cell
• The cell itself is composed of 1T and 1C

45

DRAM

2D Array DIMM/Chip DRAM Cell

Transistor

Capacitor
cell

