140 EIRER BT Mo

NATIONAL SUPERCOMPUTE TER IN GUANGZHOU

Advanced Computer Architecture

ot HOHLAR R 4

i

= 1413 -

Memory (1)
ANEINGE

xianweiz.github.io

DCS5637, 11/30/2022

u;:}ﬂ%

https://xianweiz.github.io/

Review Questions

e explain SM or CU.

The fundamental compute unit to execute GPU tasks, hosting
multiple simple cores to run the threads

* relationship of kernel and grid?
Threads to execute the kernel are organized as a grid.
e steps of kernel launch?
User-mode queue, command processor, blocks to SM, warps

e stream in GPU?
software abstraction of queue, path to transmit tasks from CPU

* MPS?

multi-process service to run multi processes on GPU

e shared memory in GPU?
software-controlled L1 cache in SM, fast data share within block

A‘v & \ ’g [

[)

(&) T b X Y'Y
Iy s/ SUN YAT-SEN UNIVERSITY ¥ ’ ‘

Multi-chip Module

* Aggregating multiple GPU modules within a single
package, as opposed to a single monolithic die.

* AMD: Chiplet GPUs

- MI200: 220 compute units, 14K streaming cores
- MI1100: 120 compute units, 7680 streaming cores

* Nvidia: Multi-Chip-Module (MCM) GPUs
- Hopper (Ampere -> Lovelace): 300+ SMs, 40K+ CUDA cores
— A100: 128 SMs, 8192 CUDA cores

' | | SYSH/O

ccccc ORAR R
GPU GPU
Module ' Module

Stacked

“* Monolilthic ™" “oaam 1
L : ! ’ MCM L
A= S GPU

Stacked

ORAM Stacked

IIIIIII DAV
' GPU - GPU
Package Module Module

h;’@i

High-speed Links[mi#i%]

* GPUs are of high compute capability, being bottlenecked
on data movement

* High-speed interconnect to achieve significantly higher
data movement
— Nvidia: NVLink
— AMD: Infinity Fabric
- Intel: Compute eXpress Link (CXL)

PCle
16 GB/s

CPU-GPU Systems Connected NVLink Enables Fast Unified Memory Access
via PCl-e between CPU & GPU Memories

D
(&) T X 4
(:¢05%)
\&
N U SUN YAT-SEN UNIVERSITY

Summary of DLP/GPU 4]

* Data level parallelism

— SIMD: operates on multiple data with on single instruction
o AVX-512 on Intel CPU is the typical example

— SIMT: consists of multiple scalar threads executing in a SIMD
manner
o GPU is the example with threads executing the same instruction

* GPU hardware and thread organization

— Device = SM - SIMD/Partition = Core ¥ 4 l "
— Grid = Block = Warp = Thread T - N
+ GPU programming 55550 BB

— Streams to support concurrency
— Memory hierarchy and usage (thread, cache/smem, global)
— Advanced topics: virtualization, profiling/tuning, divergence, etc

(3R ¢
(B) 7 WL
\%) L
avus/ SUN YAT-SEN UNIVERSITY ‘ (A

Part-1: Memory Hierarchy

Memory Access[##fit i 1]

* Programmer’s view: read/write (i.e., load/store)
— Instruction[f§4]

— Data[#i#a]

Program counter

Next instruction
Fetch |e—
!

Decode
!

Execute

Memory

y >
Memory [€—

!
Writeback

\ 77_ “ SUN YAT-SEN UNIVERSITY ﬂ ' ‘

Memory i)

e |deal memory[HAE 5]
— Zero access time (latency)[ZF] L]
— Infinite capacity[LR F&E]
— Zero cost[ZE A
— Infinite bandwidth (to support parallel accesses)[TchR 77 %]

* Problem: the requirements are conflicting[/7] #%: 73R H J¥]
— Bigger is slower[K& &> K 4iE] g b
o Longer time to determine the location - \a\%) b
— Faster is more expensive[tRij 1] = & il AK] R
o More advanced technology)
— Higher bandwidth is more expensive[& i 7 > 84
o More access ports, higher frequency, ...

AR [2

g@ 9 b U L, B
\) y
,7 SUN YAT-SEN UNIVERSITY | ’ ‘

Memory in Modern System

‘# *' *
Gy T b X &
SUN YAT-SEN UNIVERSITY

+H :‘p*
,f’.

D

Memory Hierarchy[# %24

* Goal: provide a memory system with a cost per bit that is
almost as low as the cheapest level of memory and a
speed almost as fast as the fastest level

Smallest Size- Fastext- Costliest

Cache (SRAM)

Primary Memory (DRAM)

Secondary Memory

Largest Size- Slowest- Cheapest

1o D

emory Hierarchy (cont.

@1t

b KB

SUN YAT-SEN UNIVERSITY

Memory
Flash
Memory memory
rolorica reference
Size: 1000 bytes 64 KB 256 KB 1-2GB 4-64GB
Speed: 300ps ins 5-10ns 50-100ns 25-50us
(A) Memory hierarchy for a personal mobile device
L2 L3
Cc C § Memory
CPU a a bus M st
Rmars g . -
h h
- - Flash
Reqgister Level 1 Level 2 Level 3 Memory roforoncoe"ml,
reference Cache Cache Cache refarence
reference reference reference
Laptop Size: 1000 bytes 64 KB 256 KB 4-8MB 4-16GB 256GB-1TB
Speed: 300ps ins 3-10ns 10-20ns 50-100ns 50-100 uS
Desktop Size: 2000 bytes 64 KB 256 KB 8-32 MB 8-64 GB 256 GB-2TB
Speed: 300ps ins 3-10ns 10-20ns 50-100 ns 50-100 uS
(B) Memory hierarchy for a laptop or a desktop
L2 L3
a a bus /O bus
& = Memory
h h
e @ Flash storage
Register Level 1 Level 2 Level 3 Memory)
reference Cache Cache Cache reference Disk Flash
reference roference reference memory memory
S 4000 64 KB 256 KB 6-64 MB 32-256 GB " sy
ze: bytes 1 -
Speed: 200ps ins 3-10ms 10-20ns 50-100 ns o bl
(C) Memory hierarchy for server

Memory Wall[1z 5]

* On modern machines, most programs that access a lot of
data are memory bound
— Latency of DRAM access is roughly 100-1000 cycles

- Involves both the limited capacity and the bandwidth of
memory transfer

Processor-DRAM Memory Gap

100,000 uProc 1.20/yr.
“Moore’s Law” rﬂo
10.000 et e e N e o P D e A e e e M
uProc 1.52/yr.
B (2Xr1:5y)
g DRAM
E 100 IS erinstnsuarstieiss 5 150 1SS SR LS XA IR LGSR AL : 7°“"cu'vyl'.
(2X/10 yrs)
e
B0 oo rrr s vttt enntertansn snd ivmntrnes
- 5 PEDGPE o o0 on o -
1 4&”-’- A e S A
1980 1985 18990 199 2000 005 1
Yea
() F X % 12

1.
il |
UNIVERSITY v’ ‘Gk{

Deeper Hierarchy[5i& 242

* 1980: no cache in micro-processor
* 1989: Inte
* 1995: Inte
* 2003: Inte

486 processor with 8KB on-chip L1 cache
Pentium Proc with 256KB on-chip L2 cache
ltanium 2 with 6MB on-chip L3 cache

* 2010: 3-level cache on chip, 4th-level cache off chip

CPU registers hold words retrieved
Smaller, 1 h from the L1 cache.
faster, L1: cache
and (SRAM) L1 cache holds cache lines retrieved
i from the L2 cache.
(ws“;:r) L2: L2 cache
er e .
rechy (SRAM) ,

storage L2 cache holds cache lines
devices retrieved from L3 cache.

L3: L3 cache

(SRAM)
L3 cache holds cache lines
retrieved from main memory.
Larger,
slower, L4: Main memory
and (DRAM)
cheaper Main memory holds disk blocks
retrieved from local disks.
(per byte) d from local disk
storage | 5. Local secondary storage \
devices (local disks) \
Local disks hold files
A retrieved from disks
on remote servers.
LS:/ Remote secondary storage
/ (e.g., Web servers)

/
Bryant and Q'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

\ . ‘iﬁl
\ iV E

Part-1l: Cache

14 D

Cache Basics[&Z 7 &Lt

* Block (line): unit of storage in the cache[ZZ 17 #.4v]

- Memory is logically divided into cache blocks that map to
locations in the cache

* When data referenced[ff /]

— HIT: if in cache, use cached data instead of accessing memory

- MISS: if not in cache, bring block into cache
o Maybe have to kick something else out to do it

* Some important cache design decisions
- Placement[jit &]: where and how to place/find a block in cache?

- Replacement[#& #t]: what data to remove to make room in
cache?

— Granularity of management[tiJ£]: large, small, uniform blocks?
— Write policy[5 % 1]: what do we do about writes?
— Instructions/data[$5 4 /%#5]: do we treat them separately?

[~‘y * | ¥

(&) T b {L ki
() 7
/ SUN YAT-SEN UNIVERSITY ’ (A

Cache Basics (cont.)

* Memory is logically divided into fixed-size blocks

* Each block maps to a location in the cache, determined
by the index bits in the address

— Used to index into the tag and data stores 129 index byte in block
2b | 3 bits| 3 bits

8-bit address
* Cache access steps

- 1) index into the tag and data stores with index bits in address
- 2) check valid bit in tag store
- 3) compare tag bits in address with the stored tag in tag store

* If a block is in the cache (cache hit), the stored tag should
be valid and match the tag of the block

s- 2
ﬂnE L

Cache Basics (cont.)

* Assume byte-addressable memory tag index byte in block
— Capacity: 256 bytes = 8-bit address 2b | 3 bits| 3 bits
— Block: 8 bytes - 3-bit offset
— #blocks: 32 (256/8) Tag Index | Offset

 Assume cache
— Capacity: 64 bytes —> 3-bit index
o Holding 8 blocks (64/8)

 What is a tag store?

- Tag
— Metadata V| Tag Data
o Valid bit Nt
o Replacement policy bits - \MIU_X/'_
o Dirty bit }
. HIT/MISS DATA

J im‘rlfmﬁmsi% 17 ﬂ’ ‘.E JL

Cache Organization

* Direct mapped

- For each item (block) of data in
memory, there is exactly one
location in the cache where it
might be

e Set associative

tag index offset

2b | 3 bits| 3 bits Tag store Data store
Address

— associative memory within the set

* Fully associative

Tag store Data store

SET |) ()
(2-way)

v J
=? MUX offset
)
Hit? Data
Tag store | I I I I 7 I I I]
[=2] [=2] [=2] [=2] [=2] [=2] [=2] [=2]
’ Logic k
iHit?

Data store [T Il Il I Il Il Il I]

Evaluation Metrics[iE#5Hx]

* Cache hit ratio
— (# hits) / (# hits + # misses) = (# hits) / (# accesses)

* Average memory access time (AMAT)
— (hit-ratio * hit-latency) + (miss-ratio * miss-latency)

e Cache hit rate: # of misses per kilo instructions (MPKI)

Example: Assume that

Processor speed = 1 GHz (1 n.sec. clock cycle)

Cache access time = 1 clock cycle

Miss penalty = 100 n.sec (100 clock cycles)

|-cache miss ratio = 1%, and D-cache miss ratio = 3%

74% of memory references are for instructions and 26% for data

Effective cache miss ratio =0.01 * 0.74 + 0.03 * 0.26 = 0.0152
Av. (effective) memory access time =1+ 0.0152 * 100 = 2.52 cycles = 2.52 n.sec

R F
(&) F o ICE
A) ’ A
s/ SUN YAT-SEN UNIVERSITY Al

Cache Misses: 3 Cs

e Compulsory/Cold[7& i P4 & fir]
— First access to a block which is not in the cache
o The block must be brought into the cache
— Cache size does not matter
— Solution: prefetching Coherence (invalidation) misses:

. . other process updates memory
* Capacity[=M AR H]

— Cache cannot contain all bocks needed during program
execution

o Blocks are evicted and later retrieved
— Solution: increase cache size, stream buffers

 Conflict[y 54 Ay 7]

— Occurs in set associative or direct mapped caches when too
many blocks are mapped to the same set

— Solution: increase associativity, victim cache
o No conflict misses in fully associative cache

f
\ NN by
https://www.slideserve.com/thomashenry/computer-architecture-cache-memory-powerpoint-ppt-presentation »y 1E =

https://www.slideserve.com/thomashenry/computer-architecture-cache-memory-powerpoint-ppt-presentation

To Optimize Cachefittk2217)

* Average memory access time (AMAT) = (hit-rate * hit-
latency) + (miss-rate * miss-latency)

* Basic requirements

— Hit latency
— Miss rate
- Miss penalty

Core 0

Core 1

Main
Memory

 Two more requirements

— Cache bandwidth
- Power consumption

Core 2

Core 3

Advanced Cache Optimizations[fik]

* Reducing the hit time[%g & iy = B} 4E]
- Small and simple first-level caches
- Way prediction

* Increasing cache bandwidth[#& & 2% 17 T
- Pipelined caches
— Multibanked caches
- Non-blocking caches

« Reducing miss penalty[&A% As iy 5 F45]
— Critical word first
- Merging write buffers

* Reducing miss rate[FFIEAT]

— Compiler optimizations

LAY
B tux s g
\% &) ‘ ; 4
/' SUN YAT-SEN UNIVERSITY | ’ ‘

1: Small & Simple 15t-level Cache[/}

time in microseconds

Relative access

* To reduce hit time and power

* The L1 cache size has recently increased either slightly or
not at all

- Limited size: pressure of both a fast clock cycle and power
limitations encourages small sizes

— Lower level of associativity: reduce both hit time and power

10.0+

30- _ W Tway @ 2wy |ty B 2.way]
| 4-way [8-way | 0.0 M4wey W Saey Bl H
25 % I
' a 8.0
(o]
e 7.0
20 -
= 6.0 4
8
= 504
151 S
3 4.0
B
- o 30
B
o 201
0.5 i
1.0
04 J y -
16 KB 32KB 64 KB 128 KB 256 KB | 23 b e i e e

Cache size Cache size

2: Way Prediction[#iill)

* To reduce hit time
— Add extra bits in the cache to predict the way of the next cache
access
o Block predictor bits
- Multiplexor is set early to select the desired block

o And in that clock cycle, only a single tag comparison is performed in
parallel with reading the cache data

— A miss results in checking the other blocks for matches in the
next clock cycle

* Miss-prediction gives longer hit time g

— Prediction accuracy
o > 90% for two-way
o > 80% for four-way
o |-cache has better accuracy than D-cache

— First used on MIPS R10000 in mid-90s,
now used on ARM Cortex-AS8

3: Pipelined ik £k

 To increase bandwidth

— Primarily target at L1, where access bandwidth constrains
instruction throughput

— Multibanks are also used in L2/L3, but mainly for power

* Pipelining L1
— Stages
o address calculation
o disambiguation (decoder)

o cache access (parallel tag and data)
o result drive (aligner)

— Allows a higher clock cycle, at the cost of increased latency

- Examples
o Pentium: 1 cycle, Pentium Pro —lll: 2, Pentium 4 —Core i7: 4 cycles

[~‘y * | ¥

(&) T b {L ki
() 7
/ SUN YAT-SEN UNIVERSITY ’ (A

3: Multibanked[z #.g]

* Organize cache as independent banks to support
simultaneous access

— ARM Cortex-A8 supports 1-4 banks for L2
— Intel i7 supports 4 banks for L1 and 8 banks for L2

* Interleave banks according to block address

— Banking works best when the accesses naturally spread across
banks

* Multiple banks also are a way to reduce power
consumption in both caches and DRAM

Block Block Block Block
address Bank 0 address Bank 1 address Bank 2 address Bank 3

0 1 2 3

4 5 6 7

8 i 10 11

12 13 14 15

(5 ry
:‘ ivﬂmﬁsﬁ 26 U ' ‘IE JL

4: Nonblocking Caches[dErH %]

Cache Miss

* To increase cache bandwidth

Blocking

* Allow hits before previous misses complete
Cache Misgs Hjt Stall on use

o H H n
— “Hit under miss
o H H H ”
— “Hit under multiple miss arerain)

Hit under miss

* Nontrivial to implement the nonblocking

— Arbitrating contention between hits and misses; tracking
outstanding misses

- Miss Status Handling Registers (MSHRs)

- Hit-under-1-miss Hit-under-2-misses - Hit-under-64-misses
5 100%
% Q0% -l rraeeneRoga - NN, - ¥ o N —
) / R/ |'-
Y (1A EERERE zr.)./.
U 1
g GOV Leeeereremeemrmemanmesssmasemsnmeemensanes l:/
— A
O 40%
“lalglels|2lels]els|alele]alz]r]s]2lz]ole]els]
K- S clS|ls(&|=|D]|EIE|®|O El2|3 S|E|le|o - c
EIE|® < 0 —
2,] alE|2 ® 5) S
H ElwElo|2(S|E|S E|g|8 HE Qg =
= |IS|IQ[gl (8|3 |E(5||2|=|8|% -
g |° °|3
(3R *J‘K’g \ [t
(&) SPECINT SPECFP Whvd?
N U SUN YAT-SEN UNIV] 'Y

5: Critical Word First & Early Restart

* To reduce miss penalty

* Processor normally needs just one word of the block at a
time
— Don’t wait for the full block to be loaded before sending the
requested word and restarting the processor

e Critical word first[o<E 241 5]
— Request missed word from memory first
- Send it to the processor as soon as it arrives

e Early restart[#& 5 5 3]
- Request words in normal order
- Send missed work to the processor as soon as it arrives

* Effectiveness depends on block size and likelihood of
another access to the portion of the block that has not
yet been fetched

ﬂn'ai

6: Merging Write Butfers|[5 2 &]

* To reduce miss penalty

* When storing to a block that is already pending in the
write buffer, update write buffer

* Advantages

— Multiword writes are usually faster than writes one word a time
— Reduces stalls due to full write buffer

* Do not apply to I/O addresses[l/O¥ %]

Write address Vv \'J

100

108 Mem[108]

No write buffering

\'4
1 | Mem([100]
1

116 1

1

o (=} o o <

0 0
0 0
Mem([116] | 0 0
0 0

124

Mem[124]

Write address

100 Mem[100] Mem([108] Mem([116]

Mem[124]

Write buffering

o o o - <
(=] o o - <
o o o — <

#
Il
UHGJ‘

/: Compiler Optimizations[4]

* To reduce miss rate, without any hardware changes

* Loop interchange
— Swap nested loops to access memory in sequential order
- Improving spatial locality
o Maximizes use of data in a cache block before they are discarded

/* Before */
for(j=0;j<100;j=j+1)
for(i=0;i<5000;i=i+1)
x[i][j] = 2 * x[i][j];

/* After */
for(i=0;j<5000;i=i+1)
for(j=0;j<100;j=j+1)
x[i](j] = 2 * x[i][j];

h;‘ﬂi

7: Compiler Optimizations (cont’d)

* Blocking to reduce cache misses

- Instead of accessing entire rows or columns, subdivide matrices
into blocks

— Exploits a combination of spatial and temporal locality, and can
even help register allocation

J k j
¥ o1 2 3 4585 Y 012 3 45 Z 01 2 3 4 s
0 0 0
2 2 2
i i Kk
3 3 3
4 4 4
5 5 5
) ¢ . 5 z !
0 1 2 345 Y 01 2 3 4 s 0 1 2 3 4 5
0 0 0
1h IHEN ’
-2 42 2]
i i k
3 3 3
4 4 4 ’
» X n
N b, K B : : 5 Dhige

8: Hardware Prefetching g4 #5i5x]

* To reduce miss penalty or miss rate

* Prefetch items before the processor requests them

— Instruction: fetches two blocks on miss, the requested and the
next consecutive

— Data: prefetch predicted blocks

2.20

2.00

1.80

1.60

Performance improvement

1.40

1.204 1.16

1.97
: 149
i 1.40
H 1.32
g 1.26 1.29
§ i | i I I
1.00 ‘J T i I T I T T T T T T T

gap mcf fam3d wupwise galgel facerec swim applu lucas mgrid equake I iE'
SPECint2000 SPECp2000 W! 1

8: Hardware Prefetching (cont’d)

* What to prefetch? (prefetch useful data)
- Next sequential

— Stride Caf“" CPU
— General pattern Av1
? A+2 § . { L1 DCachc] (LIICaChC]
* Where to place: A+3 E
A+4 E
— Directly into caches T

Memory

— External buffers

* When to prefetch?
— Prefetched data should be timely provided

* Prefetching relies on extra memory bandwidth
— Should not interfere much with demand accesses
— Otherwise it hurts performance

(5 Ard
() FTHx % 33 Dhig:

9: Compiler-controlled Prefetching

* To reduce miss penalty or miss rate

 Compiler inserts prefetch instructions to request data
before the processor needs it

 Two flavors

— Register prefetch: loads the value into a register
— Cache prefetch: loads data into the cache

* Typically nonfaulting prefetches

— Simply turns into no-ops if they would normally result in an
exception

* Compilers must take care to gain performance
- Issuing prefetch instructions incurs an instruction overhead

(3R ¢
(B) 7 WL
\%) L
avus/ SUN YAT-SEN UNIVERSITY ‘ (A

10: Use HBM &t 55 N A7

 Use HBM to build massive L4 caches, size of 128MB - 1GB

* TagS Of HBM CaChe ;;Cn)NnIyx86CPUwithHigh

Bandwidth Memory
M

— 64B block: 1GB L4 requires 94MB of tags

o Issue: cannot place in on-chip caches

— 4KB block: 1GB L4 requires <1MB tag

o Issues: inefficient use of huge blocks, and high transfer overhead

* One approach (L-H, MICRO’2011):
— Each SDRAM row is a block index
— Each row contains set of tags and 29 data segments

— 29-set associative
DRAM ARRAY

2KB row buffer = 32 cache lines

Data lines (29-ways)

&) 1.0 ROWBUFFER Map N

Summary

Hit Band- Miss Miss Power Hardware cost/

Technique time width penalty rate consumption complexity Comment

Small and simple + - + 0 Trvial: widely used

caches

Way-predicting caches + + 1 Used in Pentium 4

Pipelined & banked - + 1 Widely used

caches

Nonblocking caches + Widely used

Critical word first and 2 Widely used

carly restart

Merging write buffer 1 Widely used with wnte
through

Compiler techniques to + 0 Software is a challenge, but

reduce cache misses many compilers handle
common linear algebra
cakculations

Hardware prefetching - - 2 instr., Most provide prefetch

of mstructions and data 3 data mstructions; modem high-
end processors also
automancally prefetch in
hardware

Compiler-controlled + 3 Needs nonblocking cache:

prefetching possible instruction
overhead: in many CPUs

HBM as additional +/- + + 3 Depends on new packaging

level of cache

SUN YA

technology. Effects depend
heawvily on hit rate
improvements

Part-lll1: Main Memory

37 w;‘gi

Virtual vs. Physical Caches

 Cache works on virtual addresses

addr .
CPU :# Cache [— e
data MMU_je— Memory
e Cache works on physical addresses
addr .
CPU 2 Y Cache [——3| Main
data MMU_ I ’| - 7| Memory

38 w;‘gi

Address Translation[&4 #]

* Address Translation: the hardware converts virtual
addresses into physical addresses via an OS-managed
lookup table (page table)

* HW and SW cooperatively manage the translation
- OS software
— Address translation hardware in MMU
— Page tables stored in physical memory or disk

* Memory management unit[N 4 # 5]
- Includes Page Table Base Register(s), TLBs, page walkers

Vival Address Real Address

MMO

vt

CPU

Page
Table

h;‘ﬂi

Address Translation (cont.)

* A virtual page is mapped to
— A physical frame, if the page is in physical memory
— A location in disk, otherwise

* If an accessed virtual page is not in memory, but on disk

— Virtual memory system brings the page into a physical frame
and adjusts the mapping =2 this is called demand paging

Virtual address

Page table n-1 p p-1 0
base register e Virtual page number (VPN) Virtual page offset (VPO)
(PTBR)
Valid Physical page number (PPN)
Y < Pago
The VPN acts table
as index into
the page table
If valid = 0
then page
not in memory m-1 p p-1 0
(page fault) Physical page number (PPN) | Physical page offset (PPO)

3
Physical address U) "G%

Intel Xeon Max

intel

N Intel Xeon Max Processors

—

>2x* Performance in -3 N . Intel intel

memory bound apps | N\ < - XEON EAP ¥

MAX SERIES MAX SERIES

o AMX Integrated Dt 5 - PCle UPI2.0 Security & Reliability
56 cores Acceloration Ssow 2 Gen5 . Technologies

Engines

T o
p

64GB 6TB g = iTie | Logcosy | Scolbe
N2.5MB 1DPC - 4800 MT/s Multi-Tile =~ Zoocelv
e shared LLC | Maxmemsie |16DIMMs persocket g PO up to 2S

https://www.servethehome.com/intel-xeon-max-

cpu-is-the-sapphire-rapids-hbm-line Only X86 CPU with ngh
https://www.tomshardware.com/news/intel-fires- Bandwidth Memory

up-xeon-max-cpus-gpus-to-rival-amd-nvidia Memory modes

5] 64GB | e DDRS HBMOnly | HBMFlatMode | HBM CachingMode
https://www.intel.com/content/www/us/en/newsr sharedLLC | TS == st o -
oom/news/introducing-intel-max-series-product- Focechangs neyte. Rt
family.html#gs.iub4p3 ISV ST B

>1GB/core HBM memory capacity

SUN YAT-SEN UNIVERSITY

https://www.servethehome.com/intel-xeon-max-cpu-is-the-sapphire-rapids-hbm-line/
https://www.intel.com/content/www/us/en/newsroom/news/introducing-intel-max-series-product-family.html

Memory Technology##fi&HAR]

* Performance of main memory
— Latency: affects Cache Miss Penalty
— Bandwidth: affects I/O & Large Block Miss Penalty

ATIMELINE OF MEMORY O
CLASS INTRODUCTIONS (‘.Q \\

3D XPoint
1989

NAND Flash
'195h4 Memory
NOR Flash

1971 Memory

1 9‘66 EPROM

DRAM

IT'S BEEN DECADES SINCE
MAINSTREAM ME

Dhige

DRAM vs. SRAM

* Main Memory uses DRAM: Dynamic Random Access

Memory

- Needs to be refreshed periodically (one row at a time)
- Addresses divided into 2 halves (memory as a 2D matrix):

o RAS or Row Access Strobe
o CAS or Column Access Strobe

 Cache uses SRAM: Static RAM

— No refresh (6 transistors/bit vs. 1)
o Size: DRAM/SRAM 4-8

o Cost/Cycle time: SRAM/DRAM 8-16

43

World Line (WL)

1

Bit Line+ T 1

(BL)

BL

wiﬁi

DRAM

* History
- 1966: Invented by Robert Dennard of IBM =
- 1967: DRAM patent was filed (issued 1968) =
— 1970: Intel built 1Kb DRAM chip (3T cell) = CgH
- ~1975: 4Kb DRAM chip (1T cell) ‘| knew it was going to be a big thing,

but | didn’t know it would grow to have
the wide impact it has today.”

Dennard Scaling Law: as transistors shrank, so did necessary voltage
and current; power is proportional to the area of the transistor

e SDRAM = DRAM with a clocked interface

« DDR SDRAM = double data rate, transfer data at both
clock edges
- DDR1 (2.5 V, 200-400 MHz) SORAM “ B
- DDR2 (1.8 V, 400-1066 MHz)
- DDR3 (1.5 V, 800-2133 MHz)
— DDR4 (1.2 V, 1600-5333 MHz) DPRSDRAW - I R R R B
- DDRS5 (1.1 V, 3200-6400 MHz)

Clock Cycle

44 I ‘i@
https://www.ibm.com/ibm/history/ibm100/us/en/icons/dram/ Py L

https://www.ibm.com/ibm/history/ibm100/us/en/icons/dram/

DRAM Structure[4:#

* DRAM is provided as DIMMs, which contain a bunch of

chips on each side

* DRAM chip can be thought of as 2D array
* Each intersection in the array is one cell
* The cell itself is composed of 1T and 1C

2D Array DIMM/Chip

O
|
I
|
Ok [OOO0|

[OOOO| [Coog|
(] o []
OOoO0O| [Coog)

OoO
|
i
(9]

row-addr

row-decode

I ;ransistor
Capacitor |

v

DRAM Cell

— row @ ®
[wordline cell

bitline

row-buffer -]

sense-amplifier

Dhige

