140 EIRER BT Mo

NATIONAL SUPERCOMPUTE TER IN GUANGZHOU

Advanced Computer Architecture

= 2R

i B R 4

i

Pitse

E

51513 -

Memory (2)
ANEINGE

xianweiz.github.io

DCS5637, 12/7/2022

u;:}ﬂ%

https://xianweiz.github.io/

Review Questions

* memory wall?
Enlarged processor-memory gap, leaving apps memory-bound
e what is ‘tag’ in cache access?

Part of address to be used to decide the access is hit/miss.
e cache associativity?

Cache is organized as sets, each of which contains multi blocks.
* types of cache misses?

Compulsory, capacity, conflict.
* reduce miss ratio?

Larger capacity, higher associativity, more levels, larger blocks.
e critical word first?

Fetch back requested words first to reduce miss penalty.

AN * A K ’g ‘j
& i
(2) /
L) y
e SUN YAT-SEN UNIVERSITY ﬂ ¥y

DRAM

* History
- 1966: Invented by Robert Dennard of IBM =
- 1967: DRAM patent was filed (issued 1968) =
~ 1970: Intel built 1Kb DRAM chip (3T cell) g
- ~1975: 4Kb DRAM chip (1T cell) ‘| knew it was going to be a big thing,

but | didn’t know it would grow to have
the wide impact it has today.”

Dennard Scaling Law: as transistors shrank, so did necessary voltage
and current; power is proportional to the area of the transistor

e SDRAM = DRAM with a clocked interface

« DDR SDRAM = double data rate, transfer data at both
clock edges
- DDR1 (2.5 V, 200-400 MHz) SORAM “ B
- DDR2 (1.8 V, 400-1066 MHz)
- DDR3 (1.5 V, 800-2133 MHz)
— DDR4 (1.2 V, 1600-5333 MHz) DPRSDRAW - I R R R B
- DDRS5 (1.1 V, 3200-6400 MHz)

Clock Cycle

3 I .ﬂ
https://www.ibm.com/ibm/history/ibm100/us/en/icons/dram/ Py L

https://www.ibm.com/ibm/history/ibm100/us/en/icons/dram/

DRAM Structure[4:#)

* DRAM is provided as DIMMs, which contain a bunch of
chips on each side

* DRAM chip can be thought of as 2D array
* Each intersection in the array is one cell
* The cell itself is composed of 1T and 1C

|
ransistor
Capacitor I

v

2D Array DIMM/Chip DRAM Cell

cache line

— row @ e o

Memory hanne E g E -g % -
Controller B] 0O N 0O u 0O § wordline cell
O O O o " T HE v
e sHL S
])) 1 DRAM S Q S sense-amplifier
gg::r(z)is;er ' s IS é i ;
dEEE— 4 ¢ cosmmmm—m g

DRAM Structure (cont.)

* A rank consists of multiple (parallel) chips contributing to
the same transaction

* A memory chip is organized internally as a number of
banks (1-8 usually)

— Physical bank: chip level, a portion of memory arrays
- Logical bank: rank level, one physical bank from each chip

 Each memory bank has a “row buffer”, which is non-
VOlatlle (SRAM reg|5terS) | Row (14 bits) | Bank (3 bits) | Column (11 bits) | Byte in bus (3 bits) |

--

DIMM

Dhige

DRAM Operations#eff]

* To read a byte (a similar process applies for writing):
— The MC sends the row address of the byte

- The entire row is read into the row buffer (the row is opened)
— The MC sends the column address of the byte

- The memory returns the byte to the controller (from the row
buffer)

- The MC sends a Pre-charge signal (close the open row)

" row ® { — Wordline

[~ wordline cell

ransistor

line

it

abstract

Capacitor I——
Bitline *

row-addr

<O
row-buffer i B B

Capacitor J

SenseAmp
@ Precharged @ Sharing ® Sensing/Restoring @ Restored ® Precharged
Vdd R vl
I S 5 caed __ L ____ AP I 5 N SO N 2 .
S
erallpll [T L I T g

Timing Constraints(#f &2 %i]

* Key timings
— tRCD: the minimum number of clock cycles required to open a
row and access a column

- tCAS: number of cycles between sending a column address to
the memory and the beginning of the data in response

— tRAS: the minimum number of clock cycles required between a
row active command and issuing the precharge command

— tRP: number of clock cycles taken between the issuing of the
precharge command and the active command

- tWR: write recovery time

RAM TIMING Read-QD—CRERD)———-
16-1 8-1 8 38 Paramgg?rs | _(_""C_t_'sac_?'oﬁ) 3 -t _____ e N
| RAS | trp — 7,

CL T T (activation + restoration) (precharge)

D Write{__ACT) WRITE) —(__PRE)

Timin T i : . o i
Parameteg < trap >|-burst write K- ~tyyg _>|<_ trp _>|

Page Mode[Ti##]

* A “DRAM row” is also called a “DRAM page”
— Usually larger than the OS page, e.g., 8KB vs. 4KB

e Row buffers act as a cache within DRAM

* Open page
— Row buffer hit: ~20 ns access time (must only move data from row
buffer to pins)

— Row buffer conflict: ~60 ns (must first precharge the bitlines, then
read new row, then move data to pins)

* Closed page

- Empty row buffer access: ~40 ns (must first read arrays, then move
data from row buffer to pins)
— Steps
o Activate command opens row (placed into row buffer)
o Read/write command reads/writes column in the row buffer

D& Precharge command closes the row and prepares the bank for next access‘E
~ Wy’

Page Mode[Ti##]

* A “DRAM row” is also called a “DRAM page”
— Usually larger than the OS page, e.g., 8KB vs. 4KB

e Row buffers act as a cache within DRAM -

Chip 0 Chip 1. Chip 2

* Open page
— Row buffer hit: ~20 ns access time (must only move data from row
buffer to pins)

— Row buffer conflict: ~60 ns (must first precharge the bitlines, then
read new row, then move data to pins)

* Closed page

- Empty row buffer access: ~40 ns (must first read arrays, then move
data from row buffer to pins)
— Steps
o Activate command opens row (placed into row buffer)
o Read/write command reads/writes column in the row buffer

D& Precharge command closes the row and prepares the bank for next access‘E
~ Wy’

#

DRAM Bandwidthig)

e Reading from a cell in the core array is a very slow process
— DDR: Core speed = % interface speed
— DDR2/GDDR3: Core speed = % interface speed
— DDR3/GDDRA4: Core speed = % interface speed
— ... likely to be worse in the future

 Calculation: transfer_rate * interface width
— Example: 266 MT/s * 64b = 2128 MB/s

Standard 1/0 clock rate M transfers/s DRAM name MiB/s/DIMM DIMM name
DDRI 133 266 DDR266 2128 PC2100
DDRI 150 300 DDR300 2400 PC2400
DDRI 200 400 DDR400 3200 PC3200
DDR2 266 533 DDR2-533 4264 PC4300
DDR2 333 667 DDR2-667 5336 PC5300
DDR2 400 300 DDR2-800 6400 PC6400
DDR3 533 1066 DDR3- 1066 8528 PC8500
DDR3 666 1333 DDR3-1333 10,664 PC10700
DDR3 300 1600 DDR3- 1600 12,800 PCI12800 ‘

i u’ j:“l)l)m 1333 2666 DDR4-2666 21.300 PC21300 (§%

Memory Power[Th#E]

e Dynamic + static[Zh &S MEA]
— read/write + standby

* Reduce power[P& LI #E]
— Drop operating voltage

— Power-down mode: disable the memory, except internal
automatic refresh

600 -
= B (779.1 mw)
400 - A
E e B Read, write, terminate auto,
Raad power BN standby
£ 200 @ Activate power (275.0 mW)
= - B Background power $ng iy
0 . . :] Power-down Self-refresh

(150 mw) (20.87 mW)

Low Typical Fully
power usage active

g‘»’ i. i’; .
%.u ‘ S;I*;YATJ-S'ENﬁ ’% 11 u"lﬂq

DRAM Variants[zZ:#

* DDR
— DDR3: 1.5V, 800MHz, 64b = 1.6G*64b = 12.8GB/s

 GDDR: graphics memory for GPUs
— GDDR5: based on DDR3, 8Gb/s, 32b 2 8G*32b = 32GB/s

 LPDDR: low power DRAM, a.k.a., mobile memory

- Lower voltage, narrower channel, optimized refresh

Performance Power Efficiency
[Gbps/pin] ‘ [mMW/GBps]
5 GDDRE)_." 100%
12 809
o
. s .
9 GDDRS5, o
2 LP5 D
6 40%
LP4X .. o
LP4 @ e
. 0/,
28 e DDR5 20%
DDR
2016 2018 2020 2016 2018 2020 :Gi
Source: ISCA2016, Samsung SAM s u N G w' ‘

DDR5 & GDDR6

* DDR
— DDR4: 1-1.2V, 1333MHz, 64b = 21.3GB/s x 4 = 85.2GB/s
— DDR5: 1.1V, 6.4Gbps, 64b = 51.2GB/s x 4 = 204.8GB/s

* GDDR
— GDDRS5: 8Gb/s(~7), 256b, 224GB/s, 12GB, GTX 980
— GDDR5X: 12Gb/s(~10), 256b, 320GB/s, 8GB, GTX 1080
— GDDR6: 16Gb/s(~14), 256b, 448GB/s, 10GB, RTX 2080
— GDDR6X: 21Gb/s (~19), 320b, 760GB/s, 10GB, RTX 3080
— GDDR6X: 21Gb/s (~21), 384b, 1008GB/s, 24GB, RTX 4090

I/0 Data Rate Device Bandwidth System Bandwidth

21 Gb/s

1GGb
12 Gb/s

32 GB/s
i I

»;‘ﬁi

https://www.techpowerup.com/gpu-specs/geforce-gtx-980.c2621
https://www.techpowerup.com/gpu-specs/geforce-gtx-1080.c2839
https://www.techpowerup.com/gpu-specs/geforce-rtx-2080.c3224
https://www.techpowerup.com/gpu-specs/geforce-rtx-3080.c3621
https://www.techpowerup.com/gpu-specs/geforce-rtx-4090.c3889

Stacked DRAM s[H#EZ)

e Stacked DRAMSs in same package as processor
— High Bandwidth Memory (HBM)

* HBM consumes less power and still maintains significantly
higher bandwidth in a small form factor

— To keep the TDP target low, HBM’s clock speed is limited to
1GBPs but, it makes up for it with its 4096 bits of the memory
bus

.~ Off Chip Memory

_, . _ Silicon Die
N ////

_~ Stacked Memory
//

Logic Die N
_~(PU/GPU

Package
Substrate

~ Interposer

HBM

k aﬂ .
(@) TmX % 14 L g

HBM [5 N AE]

A normal stack consist of four 4 DRAM dies on a base die
and has two 128-bit channels per DRAM die

- Making 8 channels in total which results in a 1024-bit interface
— 4 HBM stacks gives a width of 4 * 1024 = 4096b, 1Gb/s
— Bandwidth: 4096b * 1Gb/s = 512GB/s

* Nvidia Tesla P100: HBM2, 4096b, 16GB, 732.2GB/s

* Nvidia Tesla A100: HBM2e, 5120b, 40GB, 1555GB/s

TV

Package

] a
Substrate

IFBGA Rol
lu-Bump
GDDR5 Per Package HBM
32-bit Bus Width 1024-bit
Up to 1750MHz (7GBps) Clock Speed Up to S00MHz (1GBps)
Up to 28GB/s per chip Bandwidth >100GB/s per stack ! iﬂ G
1.5V Voltage 13V Wy

https://www.techpowerup.com/gpu-specs/tesla-p100-pcie-16-gb.c2888
https://www.techpowerup.com/gpu-specs/a100-pcie.c3623

eDRAMI[R A =]

* eDRAM: embedded DRAM
— DRAM integrated on the same die with ASIC/logic

* No pin limitations
— Can access using a wide on-chip buses

* System power savings
— Avoids off-chip 1/0 transfers

Use of eDRAM in various products

Product name Amount of
Embedded DRAM External DRAM eDRAM
IBM z15 256+ MB
IBM's System Controller (SC) SCM, with L4 cache for the zi5 960 MB
Intel Haswell, Iris Pro Graphics 5200 (GT3e) 128 MB
Intel Broadwell, Iris Pro Graphics 6200 (GT3e) 128 MB
Intel Skylake, Iris Graphics 540 and 550 (GT3e) 64 MB
ON Chip DRAM OFF Chip DRAM Intel Skylake, Iris Pro Graphics 580 (GT4e) 64 or 128 MB
*Connect directly with *Connect with logic chip by base Intel Coffee Lake, Iris Plus Graphics 655 (GT3e) 128 MB
logec bonding PlayStation 2 4 MB
*Large bend width *Small band width PlayStation Portable 4 MB
Xbox 360 10 MB
Wii U 32 MB

https://wikimili.com/en/EDRAM At
16 IR

https://wikimili.com/en/EDRAM

DRAM Scaling[4i%)

% Technology Scaling

i

I >

S SR>
aHE | HEE
Perf/BW Cost Voltage

Best case access time (no precharge) Precharge needed
Production year Chip size DRAMtype RAS time (ns) CAStime (ns) Total (ns) Total (ns)

2000 256M bit DDRI 21 21 42 63

2002 512M bit DDRI 15 15 30 45

2004 1G bit DDR2 15 15 30 45

2006 2G bit DDR2 10 10 20 30

2010 4G bit DDR3 13 13 26 39

2016 8G bit DDR4 13 13 26 39
S;JtYAﬁENﬁERg 17 u E

g

Scaling Issues| i &
* DRAM cells are more leaky[%# i 2<]

- More frequent refreshes

* Slower access[Jj |7 B} 4E]
- Longer sensing and restoring time

* Decreased reliability[7] FE %]

— Cross-talking noise, enlarged process variations

—
.

woul) ey

‘ ﬂ
Less charge Larger resistance Larger resistance Nearer cells
higher leakage current Weaker signal Lower voltage Process variations

More Leaky Longer Sensing Prolonged Restore Severer Noise

18 Dl

DRAM Researches[gii#f 5t

* Sharing/sensing timing reduction [B} 4iE]

— Optimize DRAM internal structures [CHARM’ISCA13, TL-
DRAM’HPCA13, etc]

— Utilize existing timing margins [NUAT’HPCA14, AL-DRAM’HPCA15, etc]
* DRAM restore studies[k & i} ZE]

- ldentify the restore scaling issue [Co-arch’MEM14, tWR’Patent15, etc]
— Reduce restore timings [AL-DRAM’HPCA15, MCR’ISCA15, RT’"HPCA16]

* Memory-based approximate computing[#T el 5]
— Skip DRAM refresh [Flikker’ASPLOS11, Alloc’CASES15, etc]

— Restore [DrvIP’PACT17]
cvo —@ED | —@GEND

8 PRE - — A
DATA |

_________ =
VCC+VSS
2

At1
Vss ; + T

===" |- i 1Y
Precharge U' ‘lﬂ L}'_

DRAM Researches (cont’d)

* Nowadays DRAMSs are worst-case determined

* Examples:

— Refresh: only very few rows need to be refreshed at the worst-
case rate

— Timings: overall timing constraints are determined by the worst
one

* |dea: use common-case instead

: . z =
£ |0-6 A8
22 16 2. 10°88
23 18 o 10 l10t
18 20 % 108 ~ 1000 cells @ 256 ms |]0;;
19 23 lllllllllll — ol TS SR ; ';
= 10 =
L . . 1 Z
S o-10f. ~Ncells@128ms 7 i 10°8
20 19 B o i ' 10''s
24 17 2 1 cw@eims T L 1002
= IO_ 2_') _|l ' (1] g
= 107 10 10
17 22 © Refresh interval (s) <

20 Dhege

Refresh Issues il a &)

* With higher DRAM capacity, more time will be spent on
refresh operations, greatly blocking normal reads/writes

 With further scaled DRAMSs, more cells need to be
refreshed at likely higher rates than today

* Overheads on both performance and energy

100

= D 0
=} S S

% time spent refreshing

o)
=]

Present

2Gb 4Gb 8Gb 16Gb 32Gb 64 Gb
Device capacity

Future

46%

100

% DRAM energy spent refreshing

o

21

oo
=)

o
=

I
S

)
=)

Present Future

47%

2Gb 4Gb 8Gb 16Gb 32Gb 64 Gb
Device capacity

Dhige

Emerging Memory [B4 #]

(O *
el £

30 XPOINT™ MEMORY MEDIA

Breaks the memory/storage barrier

MEMORY + STORAGE

3D XPoint™

Latency: ~100X NAND SSD
Latency: ~100,000X
Size of Data: ~1,000X

HDD

Latency: ~10 Million X
Size of Data: ~10,000X

SRAM
Latency: 1X
Size of Data: 1X

DRAM

Latency: ~10X
Size of Data: ~100X

Hard dis Dynamic NAND single- | Phase pin-torque Resistive
drive (HDD) RAM (DRAM) | level cell change RAM transfer RAM | RAM
(SLC) flash (PCRAM) SLC | (STT-RAM) (ReRAM)
Data retention Y
Cell size N/A 6 to 10F? 4 to 6F> 4 to 12F? 6 to 50F? 4 to 10F?
(F = feature size)
Access granularity 512 64 4,192 64 64 64
(Bytes)
Endurance (writes) >10'° >10'% 10* to 10° 10® to 10° >10'® 10"
Read latency 5 ms 50 ns 25 us 50 ns 10 ns 10 ns
Write latency 5 ms 50 ns 500 us 500 ns 50 ns 50 ns
Standby power Disk access Refresh N N N N
DK B mechanisms L

'YAT-SEN UNIVERSITY

g

NVM[EE 5 AL A74)

* Numerous emerging memory candidates
— Many fall between NAND and DRAM

* Pros and cons
— Non-volatility with fraction of DRAM cost/bit
- |ldeal for large memory systems
— Slower access and limited lifetime

New Memory

Latency

Endurance

Volatility

Relative Cost

https://www.tomshardware.com

/news/intel-kills-optane-
memory-business-for-good

https://investors.micron.com/ne
ws-releases/news-release-
details/micron-updates-data-
center-portfolio-strategy-
address-growing

https://www.tomshardware.com/news/intel-kills-optane-memory-business-for-good
https://investors.micron.com/news-releases/news-release-details/micron-updates-data-center-portfolio-strategy-address-growing

Future Memory System [k k54 &2 4t]

e Demands[& 3K]
- Low latency R/W

Latency

- Large size Higher

— High bandwidth BdHWg:th] w m

- Low power/energy Feurance

* Hybrid memory[iE 4] PoREte—» m

- DRAM + emerging > ~
* Abstracted interface[fli %] = m

>
— Hide device characteristics
* Changing processor- . m
memory relationship[f£&H] saA { }

— Processor-centric to
memory-centric
@ tuxs 24 g

NDP/PIMIiE A 17/47 it 5]

* Near data processing

— Minimize data movement by computing at the most
appropriate location in the hierarchy

— In NDP, computation can be performed right at the data’s home,
either in caches, main memory, or persistent storage
* Processing-in-memory
— Do computation inside the memory

Processing In-Memory
Better parallelism and lower bus traffic

CF.!l GPU/VPU
Performance DRAM ! L‘ﬁ
& X X

/ DRAM Processing In Buffer Processing In DRAM
: Memory off-loading for lower frequency and power

Memory
Off- 'oadlng

SSD 3\<>‘~“"‘!U Workloag
;‘\k

HDD

marr: ASNN e S GAMSUNG PP Y

ccccc

https://cseweb.ucsd.edu/~swanson/papers/IEEEMicro2014WONDP.pdf

Memory Dependability[a] &)

* Memory is susceptible to cosmic rays

* Soft errors: dynamic/transient errors
- Detected and fixed by error correcting codes (ECC)

 Hard errors: permanent errors
— Use sparse rows to replace defective rows

* Chip-level errors
— Chipkill: a RAID-like error recovery technique

e Stuck-at errors
- May use data-dependent sparing

* Endurance problems
* Cross-talk (bit-line & word-line)
* Read/write disturbance

N
o

T, I I
|-2 N3 N4 [DD5 G+

Ions

15

[y
o
T

w
T

Nb. Memory corrupt

o

Hour

26 I

https://upcommons.upc.edu/bitstream/handle/2117/96529/Unprotected%20Computing.pdf

https://upcommons.upc.edu/bitstream/handle/2117/96529/Unprotected%20Computing.pdf

Storage Class Memory (SCM)

* An era of very big, PB-level memory pools

* The big memory pooling is made possible by the compute
express link (CXL)

e CXL is a standard for linking memory bus devices
together: CPUs, GPUs, and memory (and a few other
more exotic things like TPUs and DPUs).

REPRESENTATIVE CXL USAGES

CACHING DEVICES | ACCELERATORS ACCELERATORS WITH MEMORY MEMORY BUFFERS
Usages Usages Usages

CXL-Connected
Capacity Memory

Tier - DDR & SCM

Flash Memory

(inte) INTERCONNECT DAY

11
R
https://www.computeexpresslink.org/ 4

https://www.computeexpresslink.org/

{0 ERBE BT Meba

NATIONAL SUPERCOMPUTER CENTER IN GUANGZHOU

Advanced Computer Architecture

Bt HOHL AR &R S5

B159F: TLP (1)
i NGE

xianweiz.github.io
DCS5637, 12/7/2022

(R \ ! # (
() FTHx % Dl

https://xianweiz.github.io/

Flynn’s Taxonomy[43

3]

 SISD: single instruction, single data
- A serial (non-parallel) computer

* SIMD: single instruction, multiple data

— Best suited for specialized problems characterized by a high
degree of regularity, such as graphics/image processing

* MISD: multiple instruction, single data

- Few (if any) actual examples of this class have ever existed

* MIMD: multiple instruction, multiple data

- Examples: supercomputers, multi-core PCs, VLIW

SISD |

Instruction Pool

Data Pool

———|PU

|

SIMD |

Instruection Pool

Data Pool

PU

———|PU

———|pU

———|PU

-~

-

-

MISD |

Data Pool

Instruction Pool

I

=

PU

|

MIMD |

Instruction Pool

Data Pool

PU

PU

PU

PU

=l

PU

PU

PU

PU

MIMD £ 454 2 #i)

* Machines using MIMD have a number of processors that
function asynchronously and independently

* Each processor fetches its own instructions and operates
on its own data

* At any time, different processors may be executing
different instructions on different pieces of data

Memory Controller

E

4 Intel Xeon CPUs 4 FT Matrix-2000 2 Compute Nodes

Sharéd L3 Cache: :

30 ‘iﬂ '
https://www.slideshare.net/abshinde/multiprocessor-74969041 UH 1

https://www.slideshare.net/abshinde/multiprocessor-74969041

Classifying Multiprocessors[434]
* Interconnection networ<[EH9§|7?%l
_Bus | [mee] s [—
— Nl(J;cwork 1 I t : \ / .
Cache Cache Cache Cpu [~ 1M
* Memory topology[N1F] — 1 o1 ™™
- UMA : : | ‘
_ N U M A Memory /0 = / \ ,\ M

* Programming model[Z&7#

e A]

— Shared memory[ZL =N 17]: every processor can name every

address location

— Message passing[iH S {£i#]: each processor can name only it’s
local memory. Communication is through explicit messages

31

https://cseweb.ucsd.edu/classes/wil3/csel141-b/slides/10-Multithreading.pdf

»3@%

https://cseweb.ucsd.edu/classes/wi13/cse141-b/slides/10-Multithreading.pdf

How to Keep Multiprocessor Busy?

* Single core processors exploit ILP
— Multiprocessors exploit TLP: thread-level parallelism

e What’s a thread?

— A program can have one or more threads of control
— Each thread has its own PC and own arch registers
— All threads in a given program share resources (e.g., memory)

* OK, so where do we find more than one thread?

— Option #1: Multi-programmed workloads cppcon | 2017
o Run multiple single-threaded programs at same time
— Option #2: Explicitly multithreaded programs
o Create a single program that has multiple threads that
work together to solve a problem
A Fundamental Turn Toward Concurrency in Software

~ Your free lunch will soon be over. What can you do about it?
https://www.cs.helsinki.fi/u/kerola/rio/papers/sutter 2005.pdf

HERB SUTTER

https://www.cs.helsinki.fi/u/kerola/rio/papers/sutter_2005.pdf

SM P[5 #5 #4]

e Symmetric (shared-memory) multiprocessors (SMPs)
- A.k.a., centralized shared-memory multiprocessors
- A.k.a., uniform memory access (UMA) multiprocessors
- Small number of cores (typically <= 8)

— Share a single centralized memory that all processors have
equal access to, hence “symmetric”
o Uniform access latency

— I e ——
// / // /

i Processor | Processor ' Processor | Processor
\ \ \

Dhige

DSM {44 2

5y 47

* Distributed shared memory (DSM)
- Memory distributed among processors

— Non-uniform memory access/latency (NUMA)
o The access time depends on the location of a data word in memory

— Processors connected via direct (switched) and non-direct
(multi-hop) interconnection networks

{ Multicore

— -

r N\
— 1O Memory
\

{ Multicore

0

0

‘»M/uluoore l'{ulboore
MP \ MP

=

Interconnection network

34

AN
Py

Shared Memory[3:= R 17

* The term “shared memory” associated with both SMP
and DSM refers to the fact that the address space is
shared

— Communication among threads occurs through the shared
address space

— Thus, a memory reference can be made by any processor to any
memory location

Proce SSOr | Prooess Proc SSOr | P rocessor ,{ulhoore (Multicore II{UHJOOFG ;(ulboore
\ MP MP MP \ MP
7 7
One O
mOf mor

e T T (=) BT SE=T (=)

eve more levels mOfll
of cache ofc h

Interconnection network

Shared cache

There Exist Caches

* Recall memory hierarchy, with cache being provided to
shorten access latency

— Each core of multiprocessors has a cache (or multiple caches)

* Caching complicates the data sharing

Smallest Size- Fastext- Costliest

A
/Cache (SRAM\

Primary Memory (DRAM)

Secondary Memory

Size . Speed
Largest Size- Slowest- Cheapest

36 Dhige

Data Caching ¥k 2217)

* Private data: used by a single processor

* Shared data: used by multiple processors

— Essentially providing communication among the
processors through reads and writes of the
shared data -

Corel Core 2 Core 3

| u | m| [u] [u
o all i il
* Caching private data L;J :
- Migrated to cache, reducing access time

L3

- No other processor uses the data (identical to
uniprocessor) *
. Main Memory (DRAM)
* Caching shared data

— Replicated in multiple caches
o Reduced access latency, reduced contention

- Introduces a new problem: cache coherence

(5 Ard
() FTHx % 37 Dhig:

Cache Coherence[ZEf7—sh)

* Processors may see different values of the same data

— The view of memory held by two different processors is through
their individual caches, which, without any additional
precautions, could end up seeing two different values

 Cache coherence problem[ZE47— 2 v i)

— Conflicts between global state (main memory) and local state
(private cache)

— At time 4, what if processor B reads X?

Cache contents for Cache contents for Memory contents for
A Time Event processor A processor B location X
C

ache| - '

1 Processor A reads X | 1

2 Processor B reads X | 1]

3 Processor A stores 0 | 0
0mto X

AE } (1

Enforcing Coherence[ffiE—]

* Coherent caches provide

— Migration: movement of data[#tiz]

o A data item can be moved to a local cache and used there in a
transparent fashion

— Replication: multiple copies of data[& 1]

o Make a copy of the data item in the local cache, so that shared data can
be simultaneously read

* Whose responsibility? Software?

— Can programmer ensure coherence if caches invisible to sw?

— What if the ISA provided a cache flush instruction?

o FLUSH-LOCAL A: flushes/invalidates the cache block containing address
A from a processor’s local cache

o FLUSH-GLOBAL A: flushes/invalidates the cache block containing
address A from all other processors’ caches

o FLUSH-CACHE X: flushes/invalidates all blocks in cache X

Enforcing Coherence (cont.)

e Software solutions are of high overheads
— And, programming burden

* Multiprocessors adopt a hardware solution to maintain
coherent caches[f#i {45 %]

— Supporting the migration and replication is critical to
performance in accessing shared data

* For the example,
- Invalidate all other copies of X when A writes to it

Cache contents for Cache contents for Memory contents for
A Time Event processor A processor B location X
C

ache| - '

1 Processor A reads X | 1
WT

2 Processor B reads X | 1]
3 Processor A stores 0 IX 0
0mto X

How do you know which copies to invalidate?
(&) 40 | G
@ Tuxs LK

Coherence Protocols[&2 i — &bl

* Cache coherence protocols: the rules to maintain
coherence for multiple processors

— Key is to track the state of any sharing of a data block

* Two classes of protocols

— Snooping[F K]
o Each core tracks sharing status of each block

— Directory based[% T H 3]

o Sharing status of each block kept in one location

@ %i ------ ;
B anacp Intewanmechon Network . \ N
$ / o o @ N
N |
[7

oltlololo k‘mocm
Nolilolo ofefolck+1)

lol4]olol | lolol1]ck+)

| 1 modified bit for each cache block in memory

41 _j 1 presence bit for each processor, each cache block in memory ‘IG “l
Py

A/—r

Snooping Coherence Protocols[#i#]

* Write invalidation protocol[E Jtx%]
— Ensure that a processor has exclusive access to a data item
before it writes that item

— Exclusive access ensures that no other readable or writable
copies of an item exist when the write occurs
o All other cached copies of the item are invalidated (= that’s the name)

* Write update/broadcast protocol[5 5 #7]

— Update all the cached copies of data item when that item is
written

— Must broadcast all writes to shared cache lines, and thus
consumes considerably more bandwidth

* Write invalidation protocol is by far the most common
- We’'ll focus on it

A‘l* * \ ¥
() T b 4 L i
\%,) A
Navus/ SUN YAT-SEN UNIVERSITY 44

Write Invalidation Protocol[E 4

 Write invalidate
— On write, invalidate all other copies
— Use bus itself to serialize

* Example

- Invalidation protocol working on a snooping bus for a single
block (X) with write-back caches

Contents of processor Contents of processor Contents of memory

Processor activity Bus activity A’s cache B's cache location X
Neither cache initially holds X and the value of X in memoryis0 0 |
Processor A reads X Cache miss 0 0
for X Processor A reads X, migrating from memory to the local cache
Processor B reads X Cache miss 0 0 0
for X Processor B reads X, migrating from memory to the local cache
Processor A writes a Invalidation 1 _ o 0
1 to X for X Processor A writes X, invalidating the copy on B
Processor B reads X Cache miss |) 1 . 1
for X Processor B reads X, A responds with the value canceling the mem response
and updates both B’s cache and memory

43 Dy

MSI Protocol

* Invalidation protocol for write-back caches
e Each data block can be[Z{E H R A

— Uncached: not in any cache
— Clean in one or more caches and up-to-date in memory, or
— Dirty in exactly one cache Dirty in more caches???

* Correspondingly, we record the coherence state of each
block in a cache as[—Z{ IR AT
- Invalid: block contains no valid data
— Shared: a clean block (can be shared by other caches), or
— Modified/Exclusive: a dirty block (cannot be in any other cache)

MSI protocol = Modified/Shared/Invalid

Makes sure that if a block is dirty in one cache, it is not valid in any
other cache and that a read request gets the most updated data

‘IE ;
https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf 24\ B

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

