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Review Questions
• memory wall?

• what is ‘tag’ in cache access?

• cache associativity?

• types of cache misses?

• reduce miss ratio?

• critical word first?
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Part of address to be used to decide the access is hit/miss.

Compulsory, capacity, conflict.

Larger capacity, higher associativity, more levels, larger blocks.

Enlarged processor-memory gap, leaving apps memory-bound

Cache is organized as sets, each of which contains multi blocks.

Fetch back requested words first to reduce miss penalty.



DRAM
• History

− 1966: Invented by Robert Dennard of IBM
− 1967: DRAM patent was filed (issued 1968)
− 1970: Intel built 1Kb DRAM chip (3T cell)
− ~1975: 4Kb DRAM chip (1T cell)

• SDRAM = DRAM with a clocked interface 
• DDR SDRAM = double data rate, transfer data at both 

clock edges 
− DDR1 (2.5 V, 200-400 MHz)
− DDR2 (1.8 V, 400-1066 MHz) 
− DDR3 (1.5 V,  800-2133 MHz) 
− DDR4 (1.2 V, 1600-5333 MHz) 
− DDR5 (1.1 V, 3200-6400 MHz)
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“I knew it was going to be a big thing, 
but I didn’t know it would grow to have 
the wide impact it has today.”

https://www.ibm.com/ibm/history/ibm100/us/en/icons/dram/

Dennard Scaling Law: as transistors shrank, so did necessary voltage 
and current; power is proportional to the area of the transistor

https://www.ibm.com/ibm/history/ibm100/us/en/icons/dram/


DRAM Structure[结构]

• DRAM is provided as DIMMs, which contain a bunch of 
chips on each side
• DRAM chip can be thought of as 2D array
• Each intersection in the array is one cell
• The cell itself is composed of 1T and 1C
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DRAM Structure (cont.)
• A rank consists of multiple (parallel) chips contributing to 

the same transaction
• A memory chip is organized internally as a number of 

banks (1-8 usually) 
− Physical bank: chip level, a portion of memory arrays
− Logical bank: rank level, one physical bank from each chip

• Each memory bank has a “row buffer”, which is non-
volatile (SRAM registers)
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DRAM Operations[操作]

• To read a byte (a similar process applies for writing):
− The MC sends the row address of the byte
− The entire row is read into the row buffer (the row is opened)
− The MC sends the column address of the byte
− The memory returns the byte to the controller (from the row 

buffer)
− The MC sends a Pre-charge signal (close the open row) 
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Timing Constraints[时序参数]

• Key timings
− tRCD: the minimum number of clock cycles required to open a 

row and access a column
− tCAS: number of cycles between sending a column address to 

the memory and the beginning of the data in response
− tRAS: the minimum number of clock cycles required between a 

row active command and issuing the precharge command
− tRP: number of clock cycles taken between the issuing of the 

precharge command and the active command
− tWR: write recovery time
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Page Mode[页模式]

• A “DRAM row” is also called a “DRAM page”
− Usually larger than the OS page, e.g., 8KB vs. 4KB

• Row buffers act as a cache within DRAM
• Open page

− Row buffer hit: ~20 ns access time (must only move data from row 
buffer to pins)

− Row buffer conflict: ~60 ns (must first precharge the bitlines, then 
read new row, then move data to pins) 

• Closed page
− Empty row buffer access: ~40 ns (must first read arrays, then move 

data from row buffer to pins)
− Steps

p Activate command opens row (placed into row buffer)
p Read/write command reads/writes column in the row buffer
p Precharge command closes the row and prepares the bank for next access
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DRAM Bandwidth[带宽]

• Reading from a cell in the core array is a very slow process
− DDR: Core speed = ½ interface speed
− DDR2/GDDR3: Core speed = ¼ interface speed
− DDR3/GDDR4: Core speed = ⅛ interface speed
− … likely to be worse in the future

• Calculation: transfer_rate * interface_width
− Example: 266 MT/s * 64b = 2128 MB/s
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Memory Power[功耗]

• Dynamic + static[动态和静态]
− read/write + standby

• Reduce power[降低功耗]
− Drop operating voltage
− Power-down mode: disable the memory, except internal 

automatic refresh
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DRAM Variants[变种]

• DDR
− DDR3: 1.5V, 800MHz, 64b à 1.6G*64b = 12.8GB/s

• GDDR: graphics memory for GPUs
− GDDR5: based on DDR3, 8Gb/s, 32b à 8G*32b = 32GB/s

• LPDDR: low power DRAM, a.k.a., mobile memory
− Lower voltage, narrower channel, optimized refresh
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DDR5 & GDDR6
• DDR

− DDR4: 1-1.2V, 1333MHz, 64b à 21.3GB/s x 4 = 85.2GB/s
− DDR5: 1.1V, 6.4Gbps, 64b à 51.2GB/s x 4 = 204.8GB/s

• GDDR
− GDDR5: 8Gb/s(~7), 256b, 224GB/s, 12GB, GTX 980
− GDDR5X: 12Gb/s(~10), 256b, 320GB/s, 8GB, GTX 1080
− GDDR6: 16Gb/s(~14), 256b, 448GB/s, 10GB, RTX 2080
− GDDR6X: 21Gb/s (~19), 320b, 760GB/s, 10GB, RTX 3080
− GDDR6X: 21Gb/s (~21), 384b, 1008GB/s, 24GB, RTX 4090
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https://www.techpowerup.com/gpu-specs/geforce-gtx-980.c2621
https://www.techpowerup.com/gpu-specs/geforce-gtx-1080.c2839
https://www.techpowerup.com/gpu-specs/geforce-rtx-2080.c3224
https://www.techpowerup.com/gpu-specs/geforce-rtx-3080.c3621
https://www.techpowerup.com/gpu-specs/geforce-rtx-4090.c3889


Stacked DRAMs[堆叠]

• Stacked DRAMs in same package as processor
− High Bandwidth Memory (HBM)

• HBM consumes less power and still maintains significantly 
higher bandwidth in a small form factor

− To keep the TDP target low, HBM’s clock speed is limited to 
1GBPs but, it makes up for it with its 4096 bits of the memory 
bus
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HBM[高带宽内存]

• A normal stack consist of four 4 DRAM dies on a base die 
and has two 128-bit channels per DRAM die

− Making 8 channels in total which results in a 1024-bit interface
− 4 HBM stacks gives a width of 4 * 1024 = 4096b, 1Gb/s
− Bandwidth: 4096b * 1Gb/s = 512GB/s

• Nvidia Tesla P100: HBM2, 4096b, 16GB, 732.2GB/s
• Nvidia Tesla A100: HBM2e, 5120b, 40GB, 1555GB/s
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https://www.techpowerup.com/gpu-specs/tesla-p100-pcie-16-gb.c2888
https://www.techpowerup.com/gpu-specs/a100-pcie.c3623


eDRAM[嵌入式]

• eDRAM: embedded DRAM
− DRAM integrated on the same die with ASIC/logic

• No pin limitations
− Can access using a wide on-chip buses

• System power savings
− Avoids off-chip I/O transfers
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https://wikimili.com/en/EDRAM

https://wikimili.com/en/EDRAM


DRAM Scaling[缩放]
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Technology Scaling
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Scaling Issues[问题]

• DRAM cells are more leaky[数据流失]
− More frequent refreshes

• Slower access[访问时延]
− Longer sensing and restoring time

• Decreased reliability[可靠性]
− Cross-talking noise, enlarged process variations
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DRAM Researches[前沿研究]

• Sharing/sensing timing reduction[读取时延]
− Optimize DRAM internal structures [CHARM’ISCA13, TL-

DRAM’HPCA13, etc]
− Utilize existing timing margins [NUAT’HPCA14, AL-DRAM’HPCA15, etc]

• DRAM restore studies[恢复时延]
− Identify the restore scaling issue [Co-arch’MEM14, tWR’Patent15, etc]
− Reduce restore timings [AL-DRAM’HPCA15, MCR’ISCA15, RT’HPCA16]

• Memory-based approximate computing[近似计算]
− Skip DRAM refresh [Flikker’ASPLOS11, Alloc’CASES15, etc]
− Restore [DrMP’PACT17]

19



DRAM Researches (cont’d)
• Nowadays DRAMs are worst-case determined
• Examples:

− Refresh: only very few rows need to be refreshed at the worst-
case rate

− Timings: overall timing constraints are determined by the worst 
one

• Idea: use common-case instead

20

chip0 chip1

bank0

bank1

bank0

bank1

22
23
18
19

bank0

20
24
16
17

bank1

16
18
20
23

bank0

19
17
24
22

bank1

rank0

24

bank0

24

bank1



Refresh Issues[刷新问题]

• With higher DRAM capacity, more time will be spent on 
refresh operations, greatly blocking normal reads/writes
• With further scaled DRAMs, more cells need to be 

refreshed at likely higher rates than today
• Overheads on both performance and energy

21



Emerging Memory[新型存储]
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NVM[非易失性存储]

• Numerous emerging memory candidates
− Many fall between NAND and DRAM

• Pros and cons
− Non-volatility with fraction of DRAM cost/bit
− Ideal for large memory systems
− Slower access and limited lifetime
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Future Memory System[未来存储系统]

• Demands[需求]
− Low latency
− Large size
− High bandwidth
− Low power/energy

• Hybrid memory[混合]
− DRAM + emerging

• Abstracted interface[抽象]
− Hide device characteristics

• Changing processor-
memory relationship[存算]

− Processor-centric to 
memory-centric
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NDP/PIM[近内存/存内计算]

• Near data processing
− Minimize data movement by computing at the most 

appropriate location in the hierarchy
− In NDP, computation can be performed right at the data’s home, 

either in caches, main memory, or persistent storage 

• Processing-in-memory
− Do computation inside the memory

25

https://cseweb.ucsd.edu//~swanson/papers/IEEEMicro2014WONDP.pdf

https://cseweb.ucsd.edu/~swanson/papers/IEEEMicro2014WONDP.pdf


Memory Dependability[可靠性]

• Memory is susceptible to cosmic rays 
• Soft errors: dynamic/transient errors 

− Detected and fixed by error correcting codes (ECC) 
• Hard errors: permanent errors 

− Use sparse rows to replace defective rows 
• Chip-level errors

− Chipkill: a RAID-like error recovery technique
• Stuck-at errors 

− May use data-dependent sparing 
• Endurance problems 
• Cross-talk (bit-line & word-line)
• Read/write disturbance 
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Number of memory errors per hour for multi-bit corruptions 

https://upcommons.upc.edu/bitstream/handle/2117/96529/Unprotected%20Computing.pdf

https://upcommons.upc.edu/bitstream/handle/2117/96529/Unprotected%20Computing.pdf


Storage Class Memory (SCM)
• An era of very big, PB-level memory pools
• The big memory pooling is made possible by the compute 

express link (CXL)
• CXL is a standard for linking memory bus devices 

together: CPUs, GPUs, and memory (and a few other 
more exotic things like TPUs and DPUs).
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https://www.computeexpresslink.org/

https://www.computeexpresslink.org/
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Flynn’s Taxonomy[分类]

• SISD: single instruction, single data
− A serial (non-parallel) computer

• SIMD: single instruction, multiple data
− Best suited for specialized problems characterized by a high 

degree of regularity, such as graphics/image processing

• MISD: multiple instruction, single data
− Few (if any) actual examples of this class have ever existed

• MIMD: multiple instruction, multiple data
− Examples: supercomputers, multi-core PCs, VLIW
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MIMD[多指令多数据]

• Machines using MIMD have a number of processors that 
function asynchronously and independently
• Each processor fetches its own instructions and operates 

on its own data
• At any time, different processors may be executing 

different instructions on different pieces of data
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https://www.slideshare.net/abshinde/multiprocessor-74969041

https://www.slideshare.net/abshinde/multiprocessor-74969041


Classifying Multiprocessors[分类]

• Interconnection network[互联网络]
− Bus
− Network

• Memory topology[内存]
− UMA
− NUMA

• Programming model[编程模型]
− Shared memory[共享内存]: every processor can name every 

address location
− Message passing[消息传递]: each processor can name only it’s 

local memory. Communication is through explicit messages
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https://cseweb.ucsd.edu/classes/wi13/cse141-b/slides/10-Multithreading.pdf

https://cseweb.ucsd.edu/classes/wi13/cse141-b/slides/10-Multithreading.pdf


How to Keep Multiprocessor Busy?
• Single core processors exploit ILP

− Multiprocessors exploit TLP: thread-level parallelism

• What’s a thread?
− A program can have one or more threads of control
− Each thread has its own PC and own arch registers
− All threads in a given program share resources (e.g., memory)

• OK, so where do we find more than one thread?
− Option #1: Multi-programmed workloads

p Run multiple single-threaded programs at same time
− Option #2: Explicitly multithreaded programs

p Create a single program that has multiple threads that
work together to solve a problem
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A Fundamental Turn Toward Concurrency in Software
Your free lunch will soon be over. What can you do about it?
https://www.cs.helsinki.fi/u/kerola/rio/papers/sutter_2005.pdf

https://www.cs.helsinki.fi/u/kerola/rio/papers/sutter_2005.pdf


SMP[对称型]

• Symmetric (shared-memory) multiprocessors (SMPs)
− A.k.a., centralized shared-memory multiprocessors
− A.k.a., uniform memory access (UMA) multiprocessors
− Small number of cores (typically <= 8)
− Share a single centralized memory that all processors have 

equal access to, hence “symmetric”
p Uniform access latency
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DSM[分布式共享内存]

• Distributed shared memory (DSM)
− Memory distributed among processors
− Non-uniform memory access/latency (NUMA)

p The access time depends on the location of a data word in memory
− Processors connected via direct (switched) and non-direct 

(multi-hop) interconnection networks
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Shared Memory[共享内存]

• The term “shared memory” associated with both SMP 
and DSM refers to the fact that the address space is 
shared

− Communication among threads occurs through the shared 
address space

− Thus, a memory reference can be made by any processor to any 
memory location
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There Exist Caches
• Recall memory hierarchy, with cache being provided to 

shorten access latency
− Each core of multiprocessors has a cache (or multiple caches)

• Caching complicates the data sharing
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Data Caching[数据缓存]

• Private data: used by a single processor
• Shared data: used by multiple processors

− Essentially providing communication among the 
processors through reads and writes of the 
shared data

• Caching private data
− Migrated to cache, reducing access time
− No other processor uses the data (identical to 

uniprocessor)
• Caching shared data

− Replicated in multiple caches
p Reduced access latency, reduced contention

− Introduces a new problem: cache coherence
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Cache Coherence[缓存一致性]

• Processors may see different values of the same data
− The view of memory held by two different processors is through 

their individual caches, which, without any additional 
precautions, could end up seeing two different values

• Cache coherence problem[缓存一致性问题]
− Conflicts between global state (main memory) and local state 

(private cache)
− At time 4, what if processor B reads X?
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Enforcing Coherence[保证一致性]

• Coherent caches provide
− Migration: movement of data[搬运]

p A data item can be moved to a local cache and used there in a 
transparent fashion

− Replication: multiple copies of data[备份]
p Make a copy of the data item in the local cache, so that shared data can 

be simultaneously read

• Whose responsibility? Software?
− Can programmer ensure coherence if caches invisible to sw?
− What if the ISA provided a cache flush instruction?

p FLUSH-LOCAL A: flushes/invalidates the cache block containing address 
A from a processor’s local cache

p FLUSH-GLOBAL A: flushes/invalidates the cache block containing 
address A from all other processors’ caches

p FLUSH-CACHE X: flushes/invalidates all blocks in cache X
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Enforcing Coherence (cont.)
• Software solutions are of high overheads

− And, programming burden

• Multiprocessors adopt a hardware solution to maintain 
coherent caches[硬件方案]

− Supporting the migration and replication is critical to 
performance in accessing shared data

• For the example,
− Invalidate all other copies of X when A writes to it
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✗
How do you know which copies to invalidate?



Coherence Protocols[缓存一致性协议]

• Cache coherence protocols: the rules to maintain 
coherence for multiple processors

− Key is to track the state of any sharing of a data block

• Two classes of protocols
− Snooping[窥探]

p Each core tracks sharing status of each block
− Directory based[基于目录]

p Sharing status of each block kept in one location
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Snooping Coherence Protocols[窥探]

• Write invalidation protocol[写无效]
− Ensure that a processor has exclusive access to a data item 

before it writes that item
− Exclusive access ensures that no other readable or writable 

copies of an item exist when the write occurs
p All other cached copies of the item are invalidated (👉 that’s the name)

• Write update/broadcast protocol[写更新]
− Update all the cached copies of data item when that item is 

written
− Must broadcast all writes to shared cache lines, and thus 

consumes considerably more bandwidth

• Write invalidation protocol is by far the most common
− We’ll focus on it
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Write Invalidation Protocol[写无效]

• Write invalidate
− On write, invalidate all other copies
− Use bus itself to serialize

• Example
− Invalidation protocol working on a snooping bus for a single 

block (X) with write-back caches

43

Neither cache initially holds X and the value of X in memory is 0

Processor A reads X, migrating from memory to the local cache

Processor B reads X, migrating from memory to the local cache

Processor A writes X, invalidating the copy on B

Processor B reads X, A responds with the value canceling the mem response
and updates both B’s cache and memory



MSI Protocol
• Invalidation protocol for write-back caches
• Each data block can be[数据块状态]

− Uncached: not in any cache
− Clean in one or more caches and up-to-date in memory, or
− Dirty in exactly one cache

• Correspondingly, we record the coherence state of each 
block in a cache as[一致性状态]

− Invalid: block contains no valid data
− Shared: a clean block (can be shared by other caches), or
− Modified/Exclusive: a dirty block (cannot be in any other cache)

44

MSI protocol = Modified/Shared/Invalid

Makes sure that if a block is dirty in one cache, it is not valid in any 
other cache and that a read request gets the most updated data

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

Dirty in more caches???

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

