
Advanced Computer Architecture

高级计算机体系结构

第15讲：Memory (2)
张献伟

xianweiz.github.io
DCS5637, 12/7/2022

https://xianweiz.github.io/

Review Questions
• memory wall?

• what is ‘tag’ in cache access?

• cache associativity?

• types of cache misses?

• reduce miss ratio?

• critical word first?

2

Part of address to be used to decide the access is hit/miss.

Compulsory, capacity, conflict.

Larger capacity, higher associativity, more levels, larger blocks.

Enlarged processor-memory gap, leaving apps memory-bound

Cache is organized as sets, each of which contains multi blocks.

Fetch back requested words first to reduce miss penalty.

DRAM
• History

− 1966: Invented by Robert Dennard of IBM
− 1967: DRAM patent was filed (issued 1968)
− 1970: Intel built 1Kb DRAM chip (3T cell)
− ~1975: 4Kb DRAM chip (1T cell)

• SDRAM = DRAM with a clocked interface
• DDR SDRAM = double data rate, transfer data at both

clock edges
− DDR1 (2.5 V, 200-400 MHz)
− DDR2 (1.8 V, 400-1066 MHz)
− DDR3 (1.5 V, 800-2133 MHz)
− DDR4 (1.2 V, 1600-5333 MHz)
− DDR5 (1.1 V, 3200-6400 MHz)

3

“I knew it was going to be a big thing,
but I didn’t know it would grow to have
the wide impact it has today.”

https://www.ibm.com/ibm/history/ibm100/us/en/icons/dram/

Dennard Scaling Law: as transistors shrank, so did necessary voltage
and current; power is proportional to the area of the transistor

https://www.ibm.com/ibm/history/ibm100/us/en/icons/dram/

DRAM Structure[结构]

• DRAM is provided as DIMMs, which contain a bunch of
chips on each side
• DRAM chip can be thought of as 2D array
• Each intersection in the array is one cell
• The cell itself is composed of 1T and 1C

4

DRAM

2D Array DIMM/Chip DRAM Cell

Transistor

Capacitor
cell

DRAM Structure (cont.)
• A rank consists of multiple (parallel) chips contributing to

the same transaction
• A memory chip is organized internally as a number of

banks (1-8 usually)
− Physical bank: chip level, a portion of memory arrays
− Logical bank: rank level, one physical bank from each chip

• Each memory bank has a “row buffer”, which is non-
volatile (SRAM registers)

5

DRAM Operations[操作]

• To read a byte (a similar process applies for writing):
− The MC sends the row address of the byte
− The entire row is read into the row buffer (the row is opened)
− The MC sends the column address of the byte
− The memory returns the byte to the controller (from the row

buffer)
− The MC sends a Pre-charge signal (close the open row)

6T

Vdd

.5
Vd

d

➀ Precharged

T

➃ Restored

Bi
tli
ne

Ca
pa
cit
orabstract

➂ Sensing/Restoring

T

➄ Precharged

T

Wordline

Bitline

Transistor

Capacitor

SenseAmp

➁ Sharing

T
ΔV

Timing Constraints[时序参数]

• Key timings
− tRCD: the minimum number of clock cycles required to open a

row and access a column
− tCAS: number of cycles between sending a column address to

the memory and the beginning of the data in response
− tRAS: the minimum number of clock cycles required between a

row active command and issuing the precharge command
− tRP: number of clock cycles taken between the issuing of the

precharge command and the active command
− tWR: write recovery time

7

Page Mode[页模式]

• A “DRAM row” is also called a “DRAM page”
− Usually larger than the OS page, e.g., 8KB vs. 4KB

• Row buffers act as a cache within DRAM
• Open page

− Row buffer hit: ~20 ns access time (must only move data from row
buffer to pins)

− Row buffer conflict: ~60 ns (must first precharge the bitlines, then
read new row, then move data to pins)

• Closed page
− Empty row buffer access: ~40 ns (must first read arrays, then move

data from row buffer to pins)
− Steps

p Activate command opens row (placed into row buffer)
p Read/write command reads/writes column in the row buffer
p Precharge command closes the row and prepares the bank for next access

8

Page Mode[页模式]

• A “DRAM row” is also called a “DRAM page”
− Usually larger than the OS page, e.g., 8KB vs. 4KB

• Row buffers act as a cache within DRAM
• Open page

− Row buffer hit: ~20 ns access time (must only move data from row
buffer to pins)

− Row buffer conflict: ~60 ns (must first precharge the bitlines, then
read new row, then move data to pins)

• Closed page
− Empty row buffer access: ~40 ns (must first read arrays, then move

data from row buffer to pins)
− Steps

p Activate command opens row (placed into row buffer)
p Read/write command reads/writes column in the row buffer
p Precharge command closes the row and prepares the bank for next access

9

DRAM Bandwidth[带宽]

• Reading from a cell in the core array is a very slow process
− DDR: Core speed = ½ interface speed
− DDR2/GDDR3: Core speed = ¼ interface speed
− DDR3/GDDR4: Core speed = ⅛ interface speed
− … likely to be worse in the future

• Calculation: transfer_rate * interface_width
− Example: 266 MT/s * 64b = 2128 MB/s

10

Memory Power[功耗]

• Dynamic + static[动态和静态]
− read/write + standby

• Reduce power[降低功耗]
− Drop operating voltage
− Power-down mode: disable the memory, except internal

automatic refresh

11

DRAM Variants[变种]

• DDR
− DDR3: 1.5V, 800MHz, 64b à 1.6G*64b = 12.8GB/s

• GDDR: graphics memory for GPUs
− GDDR5: based on DDR3, 8Gb/s, 32b à 8G*32b = 32GB/s

• LPDDR: low power DRAM, a.k.a., mobile memory
− Lower voltage, narrower channel, optimized refresh

12

DDR5 & GDDR6
• DDR

− DDR4: 1-1.2V, 1333MHz, 64b à 21.3GB/s x 4 = 85.2GB/s
− DDR5: 1.1V, 6.4Gbps, 64b à 51.2GB/s x 4 = 204.8GB/s

• GDDR
− GDDR5: 8Gb/s(~7), 256b, 224GB/s, 12GB, GTX 980
− GDDR5X: 12Gb/s(~10), 256b, 320GB/s, 8GB, GTX 1080
− GDDR6: 16Gb/s(~14), 256b, 448GB/s, 10GB, RTX 2080
− GDDR6X: 21Gb/s (~19), 320b, 760GB/s, 10GB, RTX 3080
− GDDR6X: 21Gb/s (~21), 384b, 1008GB/s, 24GB, RTX 4090

13

https://www.techpowerup.com/gpu-specs/geforce-gtx-980.c2621
https://www.techpowerup.com/gpu-specs/geforce-gtx-1080.c2839
https://www.techpowerup.com/gpu-specs/geforce-rtx-2080.c3224
https://www.techpowerup.com/gpu-specs/geforce-rtx-3080.c3621
https://www.techpowerup.com/gpu-specs/geforce-rtx-4090.c3889

Stacked DRAMs[堆叠]

• Stacked DRAMs in same package as processor
− High Bandwidth Memory (HBM)

• HBM consumes less power and still maintains significantly
higher bandwidth in a small form factor

− To keep the TDP target low, HBM’s clock speed is limited to
1GBPs but, it makes up for it with its 4096 bits of the memory
bus

14

HBM[高带宽内存]

• A normal stack consist of four 4 DRAM dies on a base die
and has two 128-bit channels per DRAM die

− Making 8 channels in total which results in a 1024-bit interface
− 4 HBM stacks gives a width of 4 * 1024 = 4096b, 1Gb/s
− Bandwidth: 4096b * 1Gb/s = 512GB/s

• Nvidia Tesla P100: HBM2, 4096b, 16GB, 732.2GB/s
• Nvidia Tesla A100: HBM2e, 5120b, 40GB, 1555GB/s

15

https://www.techpowerup.com/gpu-specs/tesla-p100-pcie-16-gb.c2888
https://www.techpowerup.com/gpu-specs/a100-pcie.c3623

eDRAM[嵌入式]

• eDRAM: embedded DRAM
− DRAM integrated on the same die with ASIC/logic

• No pin limitations
− Can access using a wide on-chip buses

• System power savings
− Avoids off-chip I/O transfers

16
https://wikimili.com/en/EDRAM

https://wikimili.com/en/EDRAM

DRAM Scaling[缩放]

17

Technology Scaling

Perf/BW Cost Voltage
20

0 40
0

80
0M

Hz

3.
0V

1.
8V

1.
2V$8
0,
00

0

$1
,0
00

$1
0

Scaling Issues[问题]

• DRAM cells are more leaky[数据流失]
− More frequent refreshes

• Slower access[访问时延]
− Longer sensing and restoring time

• Decreased reliability[可靠性]
− Cross-talking noise, enlarged process variations

18

Longer Sensing Prolonged RestoreMore Leaky Severer Noise

Less charge
higher leakage current

Larger resistance
Weaker signal

Larger resistance
Lower voltage

Nearer cells
Process variations

DRAM Researches[前沿研究]

• Sharing/sensing timing reduction[读取时延]
− Optimize DRAM internal structures [CHARM’ISCA13, TL-

DRAM’HPCA13, etc]
− Utilize existing timing margins [NUAT’HPCA14, AL-DRAM’HPCA15, etc]

• DRAM restore studies[恢复时延]
− Identify the restore scaling issue [Co-arch’MEM14, tWR’Patent15, etc]
− Reduce restore timings [AL-DRAM’HPCA15, MCR’ISCA15, RT’HPCA16]

• Memory-based approximate computing[近似计算]
− Skip DRAM refresh [Flikker’ASPLOS11, Alloc’CASES15, etc]
− Restore [DrMP’PACT17]

19

DRAM Researches (cont’d)
• Nowadays DRAMs are worst-case determined
• Examples:

− Refresh: only very few rows need to be refreshed at the worst-
case rate

− Timings: overall timing constraints are determined by the worst
one

• Idea: use common-case instead

20

chip0 chip1

bank0

bank1

bank0

bank1

22
23
18
19

bank0

20
24
16
17

bank1

16
18
20
23

bank0

19
17
24
22

bank1

rank0

24

bank0

24

bank1

Refresh Issues[刷新问题]

• With higher DRAM capacity, more time will be spent on
refresh operations, greatly blocking normal reads/writes
• With further scaled DRAMs, more cells need to be

refreshed at likely higher rates than today
• Overheads on both performance and energy

21

Emerging Memory[新型存储]

22

NVM[非易失性存储]

• Numerous emerging memory candidates
− Many fall between NAND and DRAM

• Pros and cons
− Non-volatility with fraction of DRAM cost/bit
− Ideal for large memory systems
− Slower access and limited lifetime

23

Latency

DRAM NAND3D Xpoint

Endurance

Volatility

Relative Cost

New Memory

Low High

✗
https://www.tomshardware.com
/news/intel-kills-optane-
memory-business-for-good

https://investors.micron.com/ne
ws-releases/news-release-
details/micron-updates-data-
center-portfolio-strategy-
address-growing

https://www.tomshardware.com/news/intel-kills-optane-memory-business-for-good
https://investors.micron.com/news-releases/news-release-details/micron-updates-data-center-portfolio-strategy-address-growing

Future Memory System[未来存储系统]

• Demands[需求]
− Low latency
− Large size
− High bandwidth
− Low power/energy

• Hybrid memory[混合]
− DRAM + emerging

• Abstracted interface[抽象]
− Hide device characteristics

• Changing processor-
memory relationship[存算]

− Processor-centric to
memory-centric

24

CPU

PCH SATA
SSD

NAND
Flash

NVMe
SSD

NAND
Flash

DRAM

NVDIMM
NAND
FlashDRAM

3D XPoint™

DDR
DDR

DDR/PCIe

PCIe

SATA

SATA

Lower
R/W

Latency

Higher
Bandwidth

Higher
Endurance

Lower
cost

per bit Disk

NDP/PIM[近内存/存内计算]

• Near data processing
− Minimize data movement by computing at the most

appropriate location in the hierarchy
− In NDP, computation can be performed right at the data’s home,

either in caches, main memory, or persistent storage

• Processing-in-memory
− Do computation inside the memory

25

https://cseweb.ucsd.edu//~swanson/papers/IEEEMicro2014WONDP.pdf

https://cseweb.ucsd.edu/~swanson/papers/IEEEMicro2014WONDP.pdf

Memory Dependability[可靠性]

• Memory is susceptible to cosmic rays
• Soft errors: dynamic/transient errors

− Detected and fixed by error correcting codes (ECC)
• Hard errors: permanent errors

− Use sparse rows to replace defective rows
• Chip-level errors

− Chipkill: a RAID-like error recovery technique
• Stuck-at errors

− May use data-dependent sparing
• Endurance problems
• Cross-talk (bit-line & word-line)
• Read/write disturbance

26
Number of memory errors per hour for multi-bit corruptions

https://upcommons.upc.edu/bitstream/handle/2117/96529/Unprotected%20Computing.pdf

https://upcommons.upc.edu/bitstream/handle/2117/96529/Unprotected%20Computing.pdf

Storage Class Memory (SCM)
• An era of very big, PB-level memory pools
• The big memory pooling is made possible by the compute

express link (CXL)
• CXL is a standard for linking memory bus devices

together: CPUs, GPUs, and memory (and a few other
more exotic things like TPUs and DPUs).

27
https://www.computeexpresslink.org/

https://www.computeexpresslink.org/

Advanced Computer Architecture

高级计算机体系结构

第15讲：TLP (1)
张献伟

xianweiz.github.io
DCS5637, 12/7/2022

https://xianweiz.github.io/

Flynn’s Taxonomy[分类]

• SISD: single instruction, single data
− A serial (non-parallel) computer

• SIMD: single instruction, multiple data
− Best suited for specialized problems characterized by a high

degree of regularity, such as graphics/image processing

• MISD: multiple instruction, single data
− Few (if any) actual examples of this class have ever existed

• MIMD: multiple instruction, multiple data
− Examples: supercomputers, multi-core PCs, VLIW

29

MIMD[多指令多数据]

• Machines using MIMD have a number of processors that
function asynchronously and independently
• Each processor fetches its own instructions and operates

on its own data
• At any time, different processors may be executing

different instructions on different pieces of data

30
https://www.slideshare.net/abshinde/multiprocessor-74969041

https://www.slideshare.net/abshinde/multiprocessor-74969041

Classifying Multiprocessors[分类]

• Interconnection network[互联网络]
− Bus
− Network

• Memory topology[内存]
− UMA
− NUMA

• Programming model[编程模型]
− Shared memory[共享内存]: every processor can name every

address location
− Message passing[消息传递]: each processor can name only it’s

local memory. Communication is through explicit messages

31
https://cseweb.ucsd.edu/classes/wi13/cse141-b/slides/10-Multithreading.pdf

https://cseweb.ucsd.edu/classes/wi13/cse141-b/slides/10-Multithreading.pdf

How to Keep Multiprocessor Busy?
• Single core processors exploit ILP

− Multiprocessors exploit TLP: thread-level parallelism

• What’s a thread?
− A program can have one or more threads of control
− Each thread has its own PC and own arch registers
− All threads in a given program share resources (e.g., memory)

• OK, so where do we find more than one thread?
− Option #1: Multi-programmed workloads

p Run multiple single-threaded programs at same time
− Option #2: Explicitly multithreaded programs

p Create a single program that has multiple threads that
work together to solve a problem

32

A Fundamental Turn Toward Concurrency in Software
Your free lunch will soon be over. What can you do about it?
https://www.cs.helsinki.fi/u/kerola/rio/papers/sutter_2005.pdf

https://www.cs.helsinki.fi/u/kerola/rio/papers/sutter_2005.pdf

SMP[对称型]

• Symmetric (shared-memory) multiprocessors (SMPs)
− A.k.a., centralized shared-memory multiprocessors
− A.k.a., uniform memory access (UMA) multiprocessors
− Small number of cores (typically <= 8)
− Share a single centralized memory that all processors have

equal access to, hence “symmetric”
p Uniform access latency

33

DSM[分布式共享内存]

• Distributed shared memory (DSM)
− Memory distributed among processors
− Non-uniform memory access/latency (NUMA)

p The access time depends on the location of a data word in memory
− Processors connected via direct (switched) and non-direct

(multi-hop) interconnection networks

34

Shared Memory[共享内存]

• The term “shared memory” associated with both SMP
and DSM refers to the fact that the address space is
shared

− Communication among threads occurs through the shared
address space

− Thus, a memory reference can be made by any processor to any
memory location

35

There Exist Caches
• Recall memory hierarchy, with cache being provided to

shorten access latency
− Each core of multiprocessors has a cache (or multiple caches)

• Caching complicates the data sharing

36

Data Caching[数据缓存]

• Private data: used by a single processor
• Shared data: used by multiple processors

− Essentially providing communication among the
processors through reads and writes of the
shared data

• Caching private data
− Migrated to cache, reducing access time
− No other processor uses the data (identical to

uniprocessor)
• Caching shared data

− Replicated in multiple caches
p Reduced access latency, reduced contention

− Introduces a new problem: cache coherence

37

Cache Coherence[缓存一致性]

• Processors may see different values of the same data
− The view of memory held by two different processors is through

their individual caches, which, without any additional
precautions, could end up seeing two different values

• Cache coherence problem[缓存一致性问题]
− Conflicts between global state (main memory) and local state

(private cache)
− At time 4, what if processor B reads X?

38

A
Cache

B
Cache

WT

Enforcing Coherence[保证一致性]

• Coherent caches provide
− Migration: movement of data[搬运]

p A data item can be moved to a local cache and used there in a
transparent fashion

− Replication: multiple copies of data[备份]
p Make a copy of the data item in the local cache, so that shared data can

be simultaneously read

• Whose responsibility? Software?
− Can programmer ensure coherence if caches invisible to sw?
− What if the ISA provided a cache flush instruction?

p FLUSH-LOCAL A: flushes/invalidates the cache block containing address
A from a processor’s local cache

p FLUSH-GLOBAL A: flushes/invalidates the cache block containing
address A from all other processors’ caches

p FLUSH-CACHE X: flushes/invalidates all blocks in cache X

39

Enforcing Coherence (cont.)
• Software solutions are of high overheads

− And, programming burden

• Multiprocessors adopt a hardware solution to maintain
coherent caches[硬件方案]

− Supporting the migration and replication is critical to
performance in accessing shared data

• For the example,
− Invalidate all other copies of X when A writes to it

40

A
Cache

B
Cache

WT

✗
How do you know which copies to invalidate?

Coherence Protocols[缓存一致性协议]

• Cache coherence protocols: the rules to maintain
coherence for multiple processors

− Key is to track the state of any sharing of a data block

• Two classes of protocols
− Snooping[窥探]

p Each core tracks sharing status of each block
− Directory based[基于目录]

p Sharing status of each block kept in one location

41

Snooping Coherence Protocols[窥探]

• Write invalidation protocol[写无效]
− Ensure that a processor has exclusive access to a data item

before it writes that item
− Exclusive access ensures that no other readable or writable

copies of an item exist when the write occurs
p All other cached copies of the item are invalidated (👉 that’s the name)

• Write update/broadcast protocol[写更新]
− Update all the cached copies of data item when that item is

written
− Must broadcast all writes to shared cache lines, and thus

consumes considerably more bandwidth

• Write invalidation protocol is by far the most common
− We’ll focus on it

42

Write Invalidation Protocol[写无效]

• Write invalidate
− On write, invalidate all other copies
− Use bus itself to serialize

• Example
− Invalidation protocol working on a snooping bus for a single

block (X) with write-back caches

43

Neither cache initially holds X and the value of X in memory is 0

Processor A reads X, migrating from memory to the local cache

Processor B reads X, migrating from memory to the local cache

Processor A writes X, invalidating the copy on B

Processor B reads X, A responds with the value canceling the mem response
and updates both B’s cache and memory

MSI Protocol
• Invalidation protocol for write-back caches
• Each data block can be[数据块状态]

− Uncached: not in any cache
− Clean in one or more caches and up-to-date in memory, or
− Dirty in exactly one cache

• Correspondingly, we record the coherence state of each
block in a cache as[一致性状态]

− Invalid: block contains no valid data
− Shared: a clean block (can be shared by other caches), or
− Modified/Exclusive: a dirty block (cannot be in any other cache)

44

MSI protocol = Modified/Shared/Invalid

Makes sure that if a block is dirty in one cache, it is not valid in any
other cache and that a read request gets the most updated data

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

Dirty in more caches???

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

