
Advanced Computer Architecture

高级计算机体系结构

第16讲：TLP (2)
张献伟

xianweiz.github.io
DCS5637, 12/14/2022

https://xianweiz.github.io/


Review Questions
• DDR-1000MHz, 64b interface, what’s the bandwidth?

• sort DDR/HBM/GDDR in bandwidth ascending order?

• NVM vs. DRAM?

• Data X is shared in processors A and B. Steps for A to 
write X? (note: cache is write-back)?

• Next, processor B reads X. What will happen?

• MSI protocol?

2

DDR -> GDDR -> HBM (or, HBM -> DDR -> GDDR)

Acquires bus, sends invalidate, then updates X (shared à modified)

Places a miss on bus, A responds data and also writes back to mem.

1G x 2 x 64b/8 = 16 GB/s

Larger capacity, slower access, lower cost, less power, …

Modified/Shared/Invalid. Invalidation protocol for write-back $.



Coherence Protocols[缓存一致性协议]

• Cache coherence protocols: the rules to maintain 
coherence for multiple processors

− Key is to track the state of any sharing of a data block

• Two classes of protocols
− Snooping[窥探]

p Each core tracks sharing status of each block
− Directory based[基于目录]

p Sharing status of each block kept in one location

3



MSI Protocol
• Invalidation protocol for write-back caches
• Each data block can be[数据块状态]

− Uncached: not in any cache
− Clean in one or more caches and up-to-date in memory, or
− Dirty in exactly one cache

• Correspondingly, we record the coherence state of each 
block in a cache as[一致性状态]

− Invalid: block contains no valid data
− Shared: a clean block (can be shared by other caches), or
− Modified/Exclusive: a dirty block (cannot be in any other cache)

4

MSI protocol = Modified/Shared/Invalid

Makes sure that if a block is dirty in one cache, it is not valid in any 
other cache and that a read request gets the most updated data

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

Dirty in more caches???

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf


MSI Protocol (cont.)
• A read miss to a block in a cache, C1, generates a bus 

transaction[读不命中]
− If another cache, C2, has the block “modified”, it has to write back the 

block before memory supplies it[其他cache有新数据]
p C1 gets data from the bus and the block becomes “shared” in both caches

• A write hit to a shared block in C1 forces an “Invalidate”[写命中-’
共享’]

− Other caches that have the block should invalidate it – the block then 
becomes “modified” in C1[其他cache作废数据]

• A write hit to a modified block does not generate “Invalidate” 
or change of state[写命中-’修改’]
• A write miss (to an invalid block) in C1 generates a bus 

transaction[写不命中]
− If a cache, C2, has the block as “shared”, it invalidates it
− If a cache, C2, has the block in “modified”, it writes back the block and 

changes it state in C2 to “invalid”
− If no cache supplies the block, the memory will supply it
− When C1 gets the block, it sets its state to “modified” 

5
https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf


Example
• Assume that

− Blocks B1 and B2 map to the same cache location L
− Initially neither B1 or B2 is cached
− Block size = one word

6

L = invalid L = invalid

P1 writes 10 to B1

P1 reads B1

P2 reads B1

P2 writes 20 to B1

P2 writes 40 to B2

P1 reads B1

Event In P1’s cache In P2’s cache

(write miss)

(read hit)

(read miss) B1 is written back

(write hit)
Put invalidate B1 on bus

(write miss)
B1 is written back

(read miss)

L <- B1 = 10 (modified) L = invalid

L <- B1 = 10 (modified) L = invalid

L <- B1 = 10 (shared) L <- B1 = 10 (shared)

L = invalid

L = invalid
L <- B1 = 20 (modified)
L <- B2 = 40 (modified)
L <- B2 = 40 (modified)L <- B1 = 20 (shared)

P1
Cache

P2
Cache

B1 B2

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf


The Protocol

7



Formal Specification[形式化定义]

• Finite state transition diagram for a single private cache 
block[状态转换图]

− Transitions based on processor and bus requests, respectively

8

Invalid/Exclusive à Shared: a read happens
Invalid/Shared à Exclusive: a write happens
Shared/Exclusive à Invalid: write-invalidation



MSI Issues & Extensions[扩展]

• Complications for the basic MSI protocol
− Operations are not atomic[非原子操作]

p E.g. detect miss, acquire bus, receive a response
p Creates possibility of deadlock and races

− One solution: processor that sends invalidate can hold bus until 
other processors receive the invalidate

• MSI: always invalidate before writing
• Extensions

− Adding additional states and transitions, which optimize certain 
behaviors, possibly resulting in improved performance

− Two common extensions
p MESI: new ‘Exclusive’
p MOESI: new ‘Exclusive’ and ‘Owner’

9

M S I

M E IS

M E IO S



MESI and MOESI
• MESI adds state Exclusive

− Shared: Exclusive (only one cache) + Shared (2 or more caches)
− Indicate when a cache block is resident only in a single cache

but is clean[其他cache都没有]
− A subsequent write to a block in E state by the same core need 

not acquire bus access or generate an invalidate

• MOESI further adds state Owner
− Shared: Shared Modified (O) + Shared Clean (S)
− Indicate that the associated block is owned by that cache and 

out-of-date in memory[独有，且比内存新]
− In MSI/MESI, when sharing a block in M state, the state is 

changed to S, and the block must be written back to memory
− In MOESI, the block can be changed from M to O without 

writing it to memory
10

https://people.engr.ncsu.edu/efg/506/sum99/001/lec9-coherence.pdf

M E IS

M E IO S

https://people.engr.ncsu.edu/efg/506/sum99/001/lec9-coherence.pdf


Limits of Snooping Protocol[局限]

11

• Snooping cache coherence protocols rely on broadcasting
coherence info to all processors over the chip inter-
connect[依赖于广播]

− Cache miss occurred, triggering cache communicated with all 
other caches

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Scaling Cache Coherence

12

• One possible solution: hierarchical snooping[多层级]
− Use snooping coherence at each level

− Advantages
q Relatively simple to build (already have to deal with similar issues due to 

multi-level caches)
− Disadvantages

q The root of network may become a performance bottleneck
q Larger latencies than direct communication
q Doesn’t apply to more general network topologies

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Scalable Coherence using Directories

13

• To avoid broadcast by storing info about status of the line 
in one place: directory[目录]

− The directory entry for a cache line contains information about 
the state of the cache line in all caches[保存状态]

− Caches look up information from the directory as necessary[查询
目录]

− Cache coherence is maintained by point-to-point messages 
between the caches (not by broadcast mechanisms)[点对点通信]

• Theoretical advantages of directory-based approach
− The root of network won’t be the performance bottleneck
− Can apply to more general network topologies(e.g. meshes, 

cubes)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Simple Directory Protocol Impl.

14
http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Distributed Directory: Partition[分区]

15

• Directory partition is co-located with memory it describes
• “Home node” of a line: node with memory holding the 

corresponding data for the line
− For example: node 0 is the home node of orange line, node 1 is 

the home node of blue line

• “Requesting node”: node containing processor requesting 
line

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Example: read miss to clean line

16

• Read miss message sent to home node of requested line
• Home directory checks entry for line

− If dirty bit of line is OFF, respond with contents from memory, set 
presence[0] to true (to indicate line is cached by processor 0)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

• Read from main memory by processor 0 of blue line (not 
dirty)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Example: read miss to dirty line

17
http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

• Read from main memory by processor 0 of blue line
− Dirty and its content is in P2’s cache

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Example: read miss to dirty line (cont.)

18

1. If dirty bit is ON, data must be sourced by another processor
2. Home node responds with id of line owner
3. Requesting node requests data from owner
4. Owner responds to requesting node

o changes state in cache to SHARED (read only)

5. Owner also responds to home node, home clears dirty
o updates presence bits, updates memory

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Example: write miss

19
http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

• Write to memory by processor 0
− Line is clean, but resident in P1’s and P2’s caches

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Example: write miss (cont.)

20

1. Requesting node sends the write miss to home node
2. Home node responds with ids of nodes containing this data (sharer) 
and data
3. Requesting sharer to invalidate corresponding data
4. Get response from P1 and P2

o After receiving both invalidation acks, P0 can write
http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Pros of Directory Protocol

21

• On reads, directory tells requesting node exactly where to 
get the line from

− Either from home node (if the line is clean)
− Or from the owning node (if the line is dirty)
− Either way, retrieving data involves only point-to-point 

communication

• On writes, the advantages of directories depends on the 
number of sharers

− In the limit, if all caches are sharing data, all caches must be 
communicated with (just like broadcast in a snooping protocol)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Cons of Directory Protocol

22

• Full bit vector directory representation
• One presence bit per node

• Storage proportional to P * M
− P = number of nodes (e.g., processors)
− M = number of lines in memory

• Storage overhead rises with P
− Assume 64 byte cache line size (512 bits)
− 64 nodes (P=64) -> 12.5% overhead
− 256 nodes (P=256) -> 50% overhead
− 1024 nodes (P=1024) -> 200% overhead

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Reducing Storage Overheads

23

• Optimizations on full-bit vector scheme
− Increase cache line size (reduce M term)
− Group multiple processors into a single directory “node” 

(reduce P term)
p Need only one directory bit per node, not one bit per processor 
p Hierarchical: could use snooping protocol to maintain coherence among 

processors in a node, directory across nodes

• Two alternative schemes
− Limited pointer schemes (reduce P)
− Sparse directories (reduce M)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Limited Pointer Schemes (LPS)[有限指针]

24

• Since data is expected to only be in a few caches at once, 
storage for a limited number of pointers per directory entry 
should be sufficient (only need a list of the nodes holding a 
valid copy of the line)[数据通常小范围内共享]

− Example:
q In a 1024 processor system
q Full bit vector scheme needs 1024 bits per line
q Using limited pointer scheme, 1024 bits can store approximately 100 

pointers to nodes holding the line (log(1024) = 10 bits per pointer)
q In practice, we can get by with far less than this (20-80 principle)

Graphs plot histogram of number of sharers of a line at the time of a write 

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Managing Overflow in LPS[管理溢出]

25

• Fallback to broadcast (if broadcast mechanism exists)[广播]
− When more than max number of sharers, revert to broadcast

• If no broadcast mechanism present on machine[阈值]
− Don’t allow more than a max number of sharers
− On overflow, newest sharer replaces an existing one (must 

invalidate line in the old sharer’s cache)

• Coarse vector fallback[粗粒度]
− Revert to 'bit' vector representation
− Each bit corresponds to K nodes
− On write, invalidate all nodes a bit corresponds to

If too many pointers (sharers) are required…

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Summary of Limited Pointer Schemes

26

• LPS reduces directory storage overhead caused by large P
− By adopting a compact representation of a list of shares

• But do we really need to maintain storage for a list for 
each cache-line chunk of data in memory?
• Key observation: the majority of memory is NOT resident 

in cache. And to carry out coherence protocol the system 
only needs sharing information for lines that are currently 
in cache[仅小部分数据被缓存]

− Most directory entries are empty most of the time
− 1 MB cache, 1 GB memory per node -> 99.9% of directory 

entries are idle

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Sparse Directories[稀疏目录]

27

• Directory at home node maintains pointer to only one 
node caching line (not a list of sharers)[仅指向一个]

• Pointer to next node in list is stored as extra information in 
the cache line (like the line’s tag, dirty bits, etc.)[链表]

• On read miss: add requesting node to head of list
• On write miss: propagate invalidations along list
• On evict: need to patch up list (linked list removal)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Scaling Properties of Sparse Directories

28

• Good
− Low memory storage overhead (one pointer to list head per line)
− Additional directory storage is proportional to cache size (the list 

stored in SRAM)
− Traffic on write is still proportional to number of sharers

• Bad
− Write latency proportional to #sharers 

(invalidation of lines is serial)
− Higher implementation complexity

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Only maintains 
entries for lines 
in some cache 
(not all lines in 
memory)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


29

Reduce #msg. Sent
Read from main memory by P0 of the blue line: line is 
dirty (contained in P2’s cache)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Five network transactions in total
Four of them are sequential (transaction 4 & 5 can parallel)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


30

Intervention Forwarding[干预转发]

Read from main memory by P0 of the blue line: line is 
dirty (contained in P2’s cache)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Total 4 transactions are needed

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


31

Intervention Forwarding (cont.)

1. Requests to read miss message on home node (P1)
2. Home node requests data from owner node (P2)
3. Owning node response
4. Home node updates directory, responds to requesting node with 
requested data

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

All transactions are sequential, can they be parallel?

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


32

Request Forwarding[请求转发]

Read from main memory by P0 of the blue line: line is 
dirty (contained in P2’s cache)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Only 3 transactions are in serial
Transaction 3 & 4 can be parallel

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


33

1. Requests to read miss message on home node (P1)
2. Home node sends target data to owner
3. Owning node responses data to the home node
4. Owning node responses data to the requesting node

Request Forwarding (cont.)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Summary of Directory-base Coherence 

34

• Primary observation: broadcast doesn’t scale, but we don’t 
need to broadcast to ensure coherence because often the 
number of caches containing a copy of a line is small
• Instead of snooping, just store the list of sharers in a 

directory and check the list when necessary
• One challenge on storage[存储]

− Use hierarchies of processors or larger cache size
− Limited pointer schemes: exploit fact that most processors not 

sharing line
− Sparse directory schemes: exploit fact that most lines not in 

cache

• Another challenge on communication[通信]
− Reduce messages sent (traffic) and parallelize trans (latency)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Example
• Assume that

− Processes P1 and P2 are running on two different processors
− Locations A and B are originally cached by both processors with 

the initial value of 0

• If writes always take immediate effect and are 
immediately seen by other processors

− Then impossible for both IF to be true

• If write invalidate can be delayed, and the processor is 
allowed to continue during this delay

− Then possible to that P1 and P2 haven’t seen the invalidations 
before they attempt to read the values 

35

P1

A = 1;
L1: if (B == 0) … …

P2

B = 1;
L2: if (A == 0) … …

Reaching the IF means that either A or B must have been assigned the value 1 (i.e., IF is false)

P1
Cache

P2
Cache

A B



Coherence vs. Consistency[对比]

• Cache coherence defines requirements for the observed 
behavior of reads and writes to the same memory 
location

− Goal: to ensure that the memory system in a parallel computer 
behaves as if the caches were not there

p A system without caches would have no need for cache coherence
− Write value will be seen if sufficiently separated in time

• Memory consistency defines the behavior of reads and 
writes to different locations

− The allowed behavior of memory should be specified whether 
or not caches are present

− Coherence only guarantees that writes to address X will 
eventually propagate to other processors

− Consistency deals with when writes to X propagate to other 
processors, relative to reads and writes to other addresses

36
http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf


Memory Consistency[内存一致性]

• Memory consistency specifies the ordering behaviors
− What ordering behavior should be allowed?
− Under what conditions?

• Example: a program running two threads, where A and B 
are initially both 0. What this program can output?

− 01: (1)(2)(3)(4) or (3)(4)(1)(2)
− 11: (1)(3)(2)(4) or (1)(3)(4)(2)
− 00: intuitively, it shouldn’t be possible

37
https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html


The Example
• x à y: x must happen before y

− (2) to print 0: (2) à (3)
− (4) to print 0: (4) à (1)
− If each thread’s events happen in order

p (1) à (2)
p (3) à (4)

• Start from (1), follow the edges
− (1) à (2) à (3) à (4) à (1)
− (1) must happen before itself ???

38
https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html


Memory Operation Ordering[访存先后]

• A program defines a sequence of loads and stores (this is 
the “program order” of the loads and stores)[程序顺序]

• Four types of memory operation orderings[4类顺序]
− W→R: write to X must commit before subsequent read from Y

p When a write comes before a read in program order, the write must 
commit (its results are visible) by the time the read occurs

− R→R: read from X must commit before subsequent read from Y 
− R→W: read to X must commit before subsequent write to Y 
− W→W: write to X must commit before subsequent write to Y

• A sequentially consistent memory system maintains all 
four memory operation orderings[顺序一致]

• Certain orderings can be violated ???[违背一些顺序？]

39
http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf


Sequential Consistency[顺序一致性]

• The most straightforward model for memory consistency
− Intuitive idea: multiple threads running in parallel are 

manipulating a single main memory, and so everything must 
happen in order

p But what order?
− Intuitive order: the events in a single thread happen in the 

order in which they were written[程序顺序]
p Intuitive to programmers

• Sequential consistency requires that the result of any 
execution be the same as though

− Memory accesses executed by each proc. were kept in order
− The accesses among different processors were arbitrarily 

interleaved

40



Sequential Consistency (cont.)
• Sequential consistency (SC)

− Formalized by Leslie Lamport in 1979
− “A system is sequentially consistent if the result of any 

execution is the same as if the operations of all the processors 
were executed in some sequential order, and the operations of 
each individual processor appear in the order specified by the 
program” [看起来像。。。]

− Defining SC is one of the many achievements that earned 
Lamport the Turing award in 2013

• Sequential Consistency =
arbitrary order-preserving interleaving
of memory references of sequential programs 

41
http://csg.csail.mit.edu/6.823S14/lectures/L22.pdf

https://lamport.azurewebsites.ne
t/pubs/time-clocks.pdf

http://csg.csail.mit.edu/6.823S14/lectures/L22.pdf
https://lamport.azurewebsites.net/pubs/time-clocks.pdf


The Examples
• With SC,
• Example-1:

− Must delay the read of A or 
B (A == 0 or B == 0) until the 
previous write has 
completed (B = 1 or A = 1)

− Cannot simply place the 
write in a buffer and 
continue with the read 

• Example-2:
− print(B)/print(A) cannot 

happen before A = 1/B = 1
p 00 cannot be printed

42

P1

A = 1;
L1: if (B == 0) … …

P2

B = 1;
L2: if (A == 0) … …



Memory Consistency Model[一致性模型]

• Memory consistency model (or just “memory model”) 
defines the allowed orderings of multiple threads on a 
multiprocessor

− SC is one such model
p E.g., orderings that print 01/11 are allowed, but not 00

• A memory consistency model is a contract between the 
hw and sw

− The hw promises to only reorder operations in ways allowed by 
the model[硬件承诺]

− In return, the sw acknowledges that all such reorderings are 
possible and that is needs to account for them[软件认可]

43
https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

