140 EIRER BT Mo

NATIONAL SUPERCOMPUTE TER IN GUANGZHOU

Advanced Computer Architecture

Bt HOHL AR &R S5

F169E: TLP (2)
i NGE

xianweiz.github.io
DCS5637, 12/14/2022

u;:}ﬂ%

https://xianweiz.github.io/

Review Questions

e DDR-1000MHz, 64b interface, what’s the bandwidth?
1G x 2 x 64b/8 = 16 GB/s

* sort DDR/HBM/GDDR in bandwidth ascending order?
DDR -> GDDR -> HBM (or, HBM -> DDR -> GDDR)

* NVM vs. DRAM?
Larger capacity, slower access, lower cost, less power, ...

e Data X is shared in processors A and B. Steps for A to

write X? (note: cache is write-back)?
Acquires bus, sends invalidate, then updates X (shared = modified)

* Next, processor B reads X. What will happen?
Places a miss on bus, A responds data and also writes back to mem.

* MSI protocol?
Modified/Shared/Invalid. Invalidation protocol for write-back S.

A‘a« =t \ ¥
€l £l ‘l«’ N A J
\%. / =
&/ SUN YAT-SEN UNIVERSITY ’ y ‘

Coherence Protocols[ZE1F—a il

* Cache coherence protocols: the rules to maintain
coherence for multiple processors

— Key is to track the state of any sharing of a data block

* Two classes of protocols

— Snooping[F K]
o Each core tracks sharing status of each block

— Directory based[% T H 3]

o Sharing status of each block kept in one location

Sh 44
% / W“*,_‘

"70\1000 ‘10cu<)
mof1]ofo ololo|ck+1)

N \
0[1]olol | lolol1]ck+)

I 1 modified bit for each cache block in memory

3 D 1 presence bit for each processor, each cache block in memory | *lﬂti
44

MSI Protocol

* Invalidation protocol for write-back caches
e Each data block can be[Z{E H R A

— Uncached: not in any cache
— Clean in one or more caches and up-to-date in memory, or
— Dirty in exactly one cache Dirty in more caches???

* Correspondingly, we record the coherence state of each
block in a cache as[—Z{ IR AT
- Invalid: block contains no valid data
— Shared: a clean block (can be shared by other caches), or
— Modified/Exclusive: a dirty block (cannot be in any other cache)

MSI protocol = Modified/Shared/Invalid

Makes sure that if a block is dirty in one cache, it is not valid in any
other cache and that a read request gets the most updated data

‘IE ;
https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf 24\ B

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

MSI Protocol (cont.)

* A read miss to a block in a cache, C1, generates a bus
transaction[iE Ay H]
— |f another cache, C2, has the block “modified”, it has to write back the
block before memory supplies it[H At cache & Hr £ 4]
o C1 gets data from the bus and the block becomes “shared” in both caches
. étvylite hit to a shared block in C1 forces an “Invalidate” [5 #yH-

Y]

— Other caches that have the block should invalidate it — the block then
becomes “modified” in C1[HfhcachelE R EHE]

* A write hit to a modified block does not generate “Invalidate”
or change of state[5y - 1E 4]

* A write miss (to an invalid block) in C1 generates a bus
transaction[5 Ay H7]
— |f a cache, C2, has the block as “shared”, it invalidates it

— If a cache, C2, has the block in “modified”, it writes back the block and
changes it state in C2 to “invalid”

— If no cache supplies the block, the memory will supply it
- When C1 gets the block, it sets its state to “modified”

‘IE P
https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf 44

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

Example

e Assume that

— Blocks B1 and B2 map to the same cache location L
— Initially neither B1 or B2 is cached

— Block size = one word

. .
P1 P2
Cache Cache
Bl B2

I [R [T " R

P1 writes 10 to B1 (write miss)
P1 reads B1 (read hit)
P2 reads B1 (read miss)
P2 writes 20 to B1 |

P2 writes 40 to B2 |

P1 reads B1

write hit)
write miss)

(read miss)

L <- B1 = 10 (modified) L = invalid

L <- B1 = 10 (modified)

B1 is written back

L <- B1 =10 (shared)

L = invalid

L <- B1 =10 (shared)

Put invalidate B1 on bus

L = invalid L <- B1 = 20 (modified)
. . B1 is written back
L = invalid L <- B2 = 40 (modified)

L <- B1 =20 (shared) L <- B2 = 40 (modified)

6 IA. ‘GLZ
https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf U"

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

The Protocol

SUN YAT-SEN UNIVERSITY

miss

State of Type of
addressed cache

Request Source cache block action Function and explanation

Read hit Processor Shared or Normal hit Read data in local cache.

modified

Read Processor Invalid Normal miss Place read miss on bus.

miss

Read Processor Shared Replacement Address conflict miss: place read miss on bus.

miss

Read Processor Modified Replacement Address conflict miss: write-back block: then place read

miss miss on bus.

Wnte hity{ Processor Maodified Normal hit Write data in local cache.

Write hitf Processor Shared Coherence Place invalidate on bus. These operations are often called
upgrade or ownership misses, because they do not fetch the
data but only change the state.

Write Processor Invalid Normal miss Place write miss on bus.

miss

Write Processor Shared Replacement Address conflict miss: place write miss on bus.

miss

Write Processor Maodified Replacement Address conflict miss: write-back block: then place write

miss on bus.

Read Bus Shared No action Allow shared cache or memory to service read miss.
miss

Read Bus Modified Coherence Attempt to read shared data: place cache block on bus,
miss write-back block. and change state to shared.

Invalidate Bus Shared Coherence Attempt to write shared block; invalidate the block.
Write Bus Shared Coherence Attempt to write shared block: invalidate the cache block.
miss

Write Bus Modified Coherence Attempt to write block that is exclusive elsewhere; write-
miss back the cache block and make its state invalid in the local

cache.

7

Formal SpecificationEzbE X

* Finite state transition diagram for a single private cache
block PR 4% # 4]

— Transitions based on processor and bus requests, respectively

7~) CPU read hit
= e Wiite mess for this block T
/ /Sh - T iwalidatefor
[Invaiid CPU read | ‘.md‘"om ' this block [shared
\ Place read miss on bus ; y \ (read only)
\ CPU -
3 read
CPU write \ / miss ' | read

'_/ miss

Place write

miss onbus

abot memory
access

Write-back biock;

Wnte miss
for this block i}

C:bsve

.| (read'write)

Cache state transitions
based on requests from CPU

CPU wnite mess

(read'wnta)

/\ / __/‘ Write-back cache block
A PR S Sl Invalid/Exclusive = Shared: a read happens
CPU read hit Invalid/Shared = Exclusive: a write happens

Shared/Exclusive = Invalid: write-invalidation

8 Dhige

MSI Issues & Extensions[y &]

* Complications for the basic MSI protocol

— Operations are not atomic[3EJ& T #1F]
o E.g. detect miss, acquire bus, receive a response
o Creates possibility of deadlock and races

— One solution: processor that sends invalidate can hold bus until
other processors receive the invalidate

* MSI: always invalidate before writing

¢ EXtenSiOnS Is it necessary?

- Adding additional states and transitions, which optimize certain
behaviors, possibly resulting in improved performance

— Two common extensions M S |
o MESI: new ‘Exclusive’
o MOESI: new ‘Exclusive’ and ‘Owner’ M E S |

M EOS | %
P -

MESI and MOESI

 MESI adds state Exclusive M E S |
— Shared: Exclusive (only one cache) + Shared (2 or more caches)

— Indicate when a cache block is resident only in a single cache
but is clean[Hfthicache#f %A1

— A subsequent write to a block in E state by the same core need
not acquire bus access or generate an invalidate

e MOESI further adds state Owner M EOS I

— Shared: Shared Modified (O) + Shared Clean (S)

— Indicate that the associated block is owned by that cache and
out-of-date in memory[Jf, HEHNAFEHT]

— In MSI/MESI, when sharing a block in M state, the state is
changed to S, and the block must be written back to memory

- In MOESI, the block can be changed from M to O without
writing it to memory

h;’@i

https://people.engr.ncsu.edu/efg/506/sum99/001/lec9-coherence.pdf

https://people.engr.ncsu.edu/efg/506/sum99/001/lec9-coherence.pdf

Limits of Snooping Protocol[Js k]

* Snooping cache coherence protocols rely on broadcasting
coherence info to all processors over the chip inter-
connect[fkii T/ %]

— Cache miss occurred, triggering cache communicated with all
other caches

Processor Processor Processor Processor
Local Cache Local Cache Local Cache Local Cache
(Interconnect)
Memory 1/0

L e

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Scaling Cache Coherence

* One possible solution: hierarchical snooping[% J= %]
— Use snooping coherence at each level

Processor Processor Processor Processor Processor Processor Processor Processor
| LocalCache || || LocalCache || || LocalCache || || Local Cache | LocalCache || || LocalCache || || LocalCache || || Local Cache |
[| [[[[[I
(Interconnect) (Interconnect)
(Interconnect)
Memory
— Advantages

o Relatively simple to build (already have to deal with similar issues due to
multi-level caches)

— Disadvantages
o The root of network may become a performance bottleneck
o Larger latencies than direct communication
o Doesn’t apply to more general network topologies

L2 IR

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Scalable Coherence using Directories

* To avoid broadcast by storing info about status of the line
in one place: directory[H 3]

— The directory entry for a cache line contains information about
the state of the cache line in all caches[fR FIRF]

— Caches look up information from the directory as necessary[%:if]
H K]

— Cache coherence is maintained by point-to-point messages
between the caches (not by broadcast mechanisms)[5% fiE(E]

* Theoretical advantages of directory-based approach
— The root of network won’t be the performance bottleneck

— Can apply to more general network topologies(e.g. meshes,
cubes)

L3 M‘Ef

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Simple Directory Protocol Impl.

P presence bits: indicate whether processor P
haslinein its cache
Processor
Dirty bit: indicates line is dirty
in one of the processors’ caches
Local Cache
Onedirectoryentryper — | [0 CT T T T T T 11
cachelineofmemory | ...} Directory
One cache line of memory — —J[
Memory
[Scalable Interconnect
{ R ‘
L4 D

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Distributed Directory: Partition[4[X]

Processor 0 Processor 1 Processor 2
Local Cache Local Cache Local Cache
Directory Directory Directory
=) i =l =] = sy Jin] o o] o] B [} =] = o=
Pt — .])il s — U [l =)o
....D.-.'.:.’ I.j e == | L .. Ij S e
-Mem 5};{"" ----Mem b}'si.'.'.'.' ----Mem ory
"""""""""" (DIRRRRGN
-
Scalable Interconnect]

* Directory partition is co-located with memory it describes

“Home node” of a line: node with memory holding the
corresponding data for the line
— For example: node 0 is the home node of
the home node of blue line

“Requesting node”: node containing processor requesting

,nhode 1 is

Lo u‘;;‘ﬁf

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Example: read miss to clean line

* Read from main memory by processor O of blue line (not
dirty)

Processor 0 Processor 1 Processor 2
Locel Cache Local Cache
Directory A Directory Directory
= ey i e
e R
—-Mem 5.}9[""" —--Memo ,y
[Scalable Interconnect J
1. Request: read miss msg

2. Response (line of data from memory)

* Read miss message sent to home node of requested line

* Home directory checks entry for line

— If dirty bit of line is OFF, respond with contents from memory, set
presence[0] to true (to indicate line is cached by processor 0)

) ol |
: ivﬁs‘mﬁsﬁ 16 w' ‘IG \i

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Example: read miss to dirty line

* Read from main memory by processor 0 of blue line
— Dirty and its content is in P2’s cache

Processor 0 Processor 1 Processor 2
L
Directory A A Directory Directory A
L
S Cad=ach ek
et 0 (1] il = = e e e
.. 4 b emcnn s mmn .-
Memory ----Memory---- Memory
"""""""""" |
=
Scalable Interconnect j
1. Request: read miss msg 5. Response: data+dir revision
2. Response: owner id
3. Request: data
4. Response: data
17 I ;G »
Whvd?

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Example: read miss to dirty line (cont.)

Processor 0 Processor 1 Processor2
Directory A A Directory Directory A
et L b o 'I'I'I::"I....Q— H
- Mem ory --‘Mem ory """ Mem ory
"""""""""" |z
(Scalable Intercopriect]
1. Request: read miss msg 5. Response: data-+dir revision
2. Response: owner id
3. Request: data

4, Response; data

1. If dirty bit is ON, data must be sourced by another processor

2. Home node responds with id of line owner

3. Requesting node requests data from owner

4. Owner responds to requesting node

o changes state in cache to SHARED (read only)

5. Owner also responds to home node, home clears dirty

o updates presence bits, updates memory N ‘iﬂi
http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence N

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Example: write miss

* Write to memory by processor O
— Line is clean, but resident in P1’s and P2’s caches

Processor 0 Processor 1 Processor 2
Local Cache | Local Cache Local Cache
Directory AA A Directory A Directory A
el [T B e P
- “Mem i,}y' """ —-Mem 5};{ """" Mem i,}y'
(-
Scalable Intercohrect J
_
1. Request: write miss msg
2. Response: sharer ids + data

3. Request: invalidate (2 msgs)

4b. Response: ack from P1

4a. Response: ack from P2

L9 W

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Example: write miss (cont.)

Processor0 Processor 1 Processor 2
Directory A A A Directory F' Directory A

o = 1 = o

et | THE b W 'I'II'::IZI""‘— e
T ~—HIL1 I . e 11 Eae e
[Scalable Intercorect]

1. Request: write miss msg
2. Response: sharer ids + data

3. Request: invalidate (2 msgs)

4b. Response: ack from P1

4a. Response: ack from P2

1. Requesting node sends the write miss to home node

2. Home node responds with ids of nodes containing this data (sharer)
and data

3. Requesting sharer to invalidate corresponding data

4. Get response from P1 and P2

@fter receiving both invalidation az%ks, PO can write

UNIVERSITY http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

L

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Pros of Directory Protocol

* On reads, directory tells requesting node exactly where to
get the line from
— Either from home node (if the line is clean)
— Or from the owning node (if the line is dirty)

— Either way, retrieving data involves only point-to-point
communication

* On writes, the advantages of directories depends on the
number of sharers

- In the limit, if all caches are sharing data, all caches must be
communicated with (just like broadcast in a snooping protocol)

21 M‘Ef

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Cons of Directory Protocol

 Full bit vector directory representation

P
* One presence bit per node [TTTTT]

 Storage proportional to P * M

- P = number of nodes (e.g., processors)
— M = number of lines in memory

e Storage overhead rises with P
— Assume 64 byte cache line size (512 bits)
— 64 nodes (P=64) -> 12.5% overhead
— 256 nodes (P=256) -> 50% overhead
— 1024 nodes (P=1024) -> 200% overhead

o w;‘gi

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Reducing Storage Overheads

* Optimizations on full-bit vector scheme
— Increase cache line size (reduce M term)
— Group multiple processors into a single directory “node”
(reduce P term)

o Need only one directory bit per node, not one bit per processor

o Hierarchical: could use snooping protocol to maintain coherence among
processors in a node, directory across nodes

P
HEEEEDE

* Two alternative schemes
— Limited pointer schemes (reduce P)
— Sparse directories (reduce M)

23 w;‘gi

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Limited Pointer Schemes (LPS)# iR ig4t

* Since data is expected to only be in a few caches at once,
storage for a limited number of pointers per directory entry
should be sufficient (only need a list of the nodes holding a
valid copy of the line)[% @ & /NG FH A =]

— Example:
o Ina 1024 processor system

o Full bit vector scheme needs 1024 bits per line

o Using limited pointer scheme, 1024 bits can store approximately 100
pointers to nodes holding the line (log(1024) = 10 bits per pointer)

o In practlce we can get by with far less than this (20-80 principle)

il § 5098 T T

80 - r Ocean
70 4
60 1
50 1
40 1
30 -
20 -

15.06
10 1 3.04
o Il I ‘o 040 03003 0 003 0 0 0 0 ©0 0 0 0 0 0 0 0 o

0 " + + + + " " + + + + + - " " " I

ooooooooooooo

2 3 _
me of a write 4
ﬂnﬁ

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

A}

Managing Overflow in LPS[& ¥ i 1)

If too many pointers (sharers) are required...

* Fallback to broadcast (if broadcast mechanism exists)[) %]
— When more than max number of sharers, revert to broadcast

* If no broadcast mechanism present on machine[|®1E]
— Don’t allow more than a max number of sharers

— On overflow, newest sharer replaces an existing one (must
invalidate line in the old sharer’s cache)

* Coarse vector fallback[H ki]

— Revert to 'bit' vector representation
— Each bit corresponds to K nodes
— On write, invalidate all nodes a bit corresponds to

h;‘ﬂi

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Summary of Limited Pointer Schemes

* LPS reduces directory storage overhead caused by large P
— By adopting a compact representation of a list of shares

* But do we really need to maintain storage for a list for
each cache-line chunk of data in memory?

* Key observation: the majority of memory is NOT resident
in cache. And to carry out coherence protocol the system
only needs sharing information for lines that are currently
in cache X /N6 H s 1 2247

— Most directory entries are empty most of the time

— 1 MB cache, 1 GB memory per node -> 99.9% of directory
entries are idle

26

[
T
http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence 4

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Sparse Directories[#isi H 3]

* Directory at home node maintains pointer to only one
node caching line (not a list of sharers)[{¥f&[n]—1]

e Pointer to next node in list is stored as extra information in
the cache line (like the line’s tag, dirty bits, etc.)[#£3K]

* On read miss: add requesting node to head of list
* On write miss: propagate invalidations along list
* On evict: need to patch up list (linked list removal)

Directory (home node for line)

line data

next ptr

prevptr % -

¢ u v
Y = 4__! —————— I
]

= <&
<

Processor cache: node 0 Processor cache: node 1 Processor cache: node 2

(last reader) (last reader) 2 E
- N NRY
P -

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Scaling Properties of Sparse Directories

e Good

- Low memory storage overhead (one pointer to list head per line)

— Additional directory storage is proportional to cache size (the list
stored in SRAM)

— Traffic on write is still proportional to number of sharers

Only maintains

entries for lines

in some cache
(not all lines in
memory)

line data
next ptr

prevptr .

Directory (home node forline) o B 3 d

— Write latency proportional to #sharers
(invalidation of lines is serial)

— Higher implementation complexity

Processor cache: node 0

(last reader)

5 e
—ﬁ_* ! § f
Processor cache: node 1 Processor cache: node 2
28 (last reader) N} :GJA
http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence PN

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Reduce #msg. Sent

Read from main memory by PO of the blue line: line is
dirty (contained in P2’s cache)

Processor 0 Processor 1 Processor 2
Local Cache
Directory A A Directory Directory A
..... - St Dr
--_Mem 65{ """ ----Mem ory
-
Scalable Intercopnect j
.
1. Request: read miss msg 5. Response: data-+dir revision
2. Response: owner id
3. Request: data

4. Response: data

Five network transactions in total
Four of them are sequential (transaction 4 & 5 can parallel)

29 Dl

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Intervention Forwarding[+#i% k)

Read from main memory by PO of the blue line: line is
dirty (contained in P2’s cache)

Processor 0 Processor 1 Processor 2
‘ Local Cache Local Cache Local Cache ‘
Directory Directory Directory
| ? | 1] &
B o e O B 1
== el = e . MR
-- ‘ b ccccncccnnccnnnnncnn
Memory ----Memory---- Memory
""""""""""" e |
4
Scalable Interconnect J
-
1. Request: read miss msg 2. Request: intervention read

4. Response: data 3. Response: data-+dir revision

Total 4 transactions are needed

°U Dl

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Intervention Forwarding (cont.)

Processor 0 Processor 1 Processor 2
Local Cache Local Cache Local Cache |
Directory A Directory Directory A
8 =] CO | | . 8 = = 8 |5 E I
aBREEE el 111 s o= _l __________ 1 ..I....
e i = A 1 | D ml = o — S I o o
... 4 b ccscncscsnnsnssnsnsne
Memory ----Memory---- Memory
"""""""""" R |
2
Scalable Intercohnect J
1
1. Request: read miss msg 2. Request: intervention read

4. Response: data 3. Response: data+dir revision

1. Requests to read miss message on home node (P1)
2. Home node requests data from owner node (P2)

3. Owning node response

4. Home node updates directory, responds to requesting node with

quested data All transactions are sequential, can they be parallel?
@) Tux% G TR

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Request Forwarding[ik# k]

Read from main memory by PO of the blue line: line is
dirty (contained in P2’s cache)

Processor 0 Processor 1 Processor 2
Local Cache Local Cache Local Cache I
Directory A Directory Directory A
|

O s e s R 1 e

..... T — L

- “Mem iiﬁ """ —Mem ory

’)
_

1. Request: read miss msg 2. Request: send data to requestor

3/4. Response: data
(2 msgs: sent to both home node and requestor)

Only 3 transactions are in serial

Transaction 3 & 4 can be parallel |
& 32 _ g

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Request Forwarding (cont.)

Processor 0 Processor 1 Processor 2
Local Cache
Directory A Directory Directory A
1 | 1 |
1 e 1 e
S o
Mem 6;'; """ Mem ory
-
Scalable Interconnect]
-
1. Request: read miss msg 2. Request: send data to requestor

3/4.Response: data
(2 msgs: sent to both home node and requestor)

1. Requests to read miss message on home node (P1)

2. Home node sends target data to owner
3. Owning node responses data to the home node

o~ Dl

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Summary of Directory-base Coherence

* Primary observation: broadcast doesn’t scale, but we don’t
need to broadcast to ensure coherence because often the
number of caches containing a copy of a line is small

* Instead of snooping, just store the list of sharers in a
directory and check the list when necessary

* One challenge on storage[{#1i#i]
— Use hierarchies of processors or larger cache size

— Limited pointer schemes: exploit fact that most processors not
sharing line

— Sparse directory schemes: exploit fact that most lines not in
cache

* Another challenge on communication[i#/5]

- Reduce messages sent (traffic) and parallelize trans (latency)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Example

e Assume that

— Processes P1 and P2 are running on two different processors

- Locations A and B are originally cached by both processors with
the initial value of 0

* If writes always take immediate effect and are
immediately seen by other processors

- Then impossible for both /F to be true

Reaching the IF means that either A or B must have been assigned the value 1 (i.e., IF is false)

* If write invalidate can be delayed, and the processor is
allowed to continue during this delay

— Then possible to that P1 and P2 haven’t seen the invalidations
before they attempt to read the values

P1 P2

A=1, & /
L1: if (B =='0)———= L2: if (A Do
AL I

Coherence vs. Consistencyxf]

* Cache coherence defines requirements for the observed
behavior of reads and writes to the same memory
location

— Goal: to ensure that the memory system in a parallel computer
behaves as if the caches were not there

o A system without caches would have no need for cache coherence
— Write value will be seen if sufficiently separated in time

* Memory consistency defines the behavior of reads and
writes to different locations

— The allowed behavior of memory should be specified whether
or not caches are present

— Coherence only guarantees that writes to address X will
eventually propagate to other processors

— Consistency deals with when writes to X propagate to other
processors, relative to reads and writes to other addresses

.Ei
wveesiy http: //15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12 consistency/12 consistency slides.pdf 24\ B

http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

Memory Consistency

A U]

* Memory consistency specifies t

ne ordering behaviors

- What ordering behavior should be allowed?

— Under what conditions?

* Example: a program running two threads, where A and B
are initially both 0. What this program can output?

= 01: (1)(2)(3)(4) or (3)(4)(1)(2)
- 11:(1)(3)(2)(4) or (1)(3)(4)(2)

— 00: intuitively, it shouldn’t be possible

Thread 1 Thread 2
1A = 1 (3) lB =
20 print(B) (4) print(A)

37

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

u‘;;‘ﬁf

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

The Example

* X =2 y: X must happen beforey
- (2) to print 0: (2) =2 (3)
- (4) to print 0: (4) =2 (1)
— |f each thread’s events happen in order
o (1) 2 (2)
o (3) 2 (4)
e Start from (1), follow the edges
- (1) > (2) =2 (3) = (4) = (1)
- (1) must happen before itself ???

Thread 1 Thread 2
A= B =
2 print(B) (@) print(m
38

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

»;‘ﬁi

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Memory Operation Ordering[iif75%)5]

* A program defines a sequence of loads and stores (this is
the “program order” of the loads and stores)[& /5 /i 7]

* Four types of memory operation orderings[425)ii/¥]

- W-R: write to X must commit before subsequent read from Y

o When a write comes before a read in program order, the write must
commit (its results are visible) by the time the read occurs

— R->R: read from X must commit before subsequent read from Y
- R>W: read to X must commit before subsequent writeto Y
- W->W: write to X must commit before subsequent writeto Y

* A sequentially consistent memory system maintains all
four memory operation orderings[Jii /% — %]

e Certain orderings can be violated ???[1E 5 —&)i)/7? |

L B
wvesry it //15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12 consistency/12 consistency_slides.pdf ‘"GL

http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

Sequential ConsistencyiiiF —s i)

* The most straightforward model for memory consistency

— Intuitive idea: multiple threads running in parallel are
manipulating a single main memory, and so everything must
happen in order

o But what order?

- Intuitive order: the events in a single thread happen in the
order in which they were written[f2F i 5]

o Intuitive to programmers

* Sequential consistency requires that the result of any
execution be the same as though
— Memory accesses executed by each proc. were kept in order

— The accesses among different processors were arbitrarily
interleaved

[~‘y * | ¥

(&) T b {L ki
() 7
/ SUN YAT-SEN UNIVERSITY ’ (A

Sequential Consistency (cont.)

e Sequential consistency (SC)
— Formalized by Leslie Lamport in 1979

- “A system is sequentially consistent if the result of any
execution is the same as if the operations of all the processors
were executed in some sequential order, and the operations of
each individual processor appear in the order specified by the
program” [BEKE. . o]

— Defining SC is one of the many achievements that earned
Lamport the Turing award in 2013

Time, Clocks, and the
Ordering of Events in

s : ’ i LESLIE LAMPORT & a Distributed System

Leslie Lamport
Massachusetts Computer Associates, Inc.

United States — 2013 https://lamport.azurewebsites.ne

CITATION t/pubs/time-clocks.pdf

For fundamental contributions to the theory and practice of distributed
and concurrent systems, notably the invention of concepts such as causality
and logical clocks, safety and liveness, replicated state machines, and
sequential consistency.

41 I
http://csg.csail.mit.edu/6.823514/lectures/L22.pdf Wy

http://csg.csail.mit.edu/6.823S14/lectures/L22.pdf
https://lamport.azurewebsites.net/pubs/time-clocks.pdf

The Examples

* With SC,
P1 P2
* Example-1:
— Must delay the read of A or A= B=1,
B(A ==0orB == O) until the L1:if (B==0) L2:if (A==0)
previous write has
completed (B=1or A =1)
— Cannot simply place the
write in a buffer and
continue with the read
* Example-2: Thread 1 Thread 2
— print(B)/print(A) cannot o -
happen before A =1/B =1 2 print(B) @ print(A)

o 00 cannot be printed

< ? \ Sl |
(&) T mX % e W

Memory Consistency Model[—# it #5i #)

* Memory consistency model (or just “memory model”)
defines the allowed orderings of multiple threads on a
multiprocessor

— SC is one such model
o E.g., orderings that print 01/11 are allowed, but not 00

* A memory consistency model is a contract between the
hw and sw

— The hw promises to only reorder operations in ways allowed by
the model[figif} 7K]

- In return, the sw acknowledges that all such reorderings are
possible and that is needs to account for them[# 41\ 7]]

Thread 1 Thread 2
1) A =1 3B =1
2) print(B) () print(A)

ﬂrlﬂi

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

