
Advanced Computer Architecture

高级计算机体系结构

第17讲：TLP (3)
张献伟

xianweiz.github.io
DCS5637, 12/21/2022

https://xianweiz.github.io/

Review Questions
• Limits of snooping protocol

• For directory-based protocol, what is the entry content?

• Explain the storage overhead of dir-protocol?

• Schemes to reduce storage overhead?

• What is ‘home node’ in dir-protocol?

• Coherence vs. consistency?

2

Dirty bit + presence bits.

Limited pointer scheme (P), sparse directory (M).

Node with memory holding the corresponding data for the line

Broadcast-based, hard to scale for many processors.

One entry per memory line, presence bits for all nodes/processors.

Same vs different location, eventually vs when, cache vs. mem, …

Memory Consistency Model[一致性模型]

• Memory consistency model (or just “memory model”)
defines the allowed orderings of multiple threads on a
multiprocessor

− SC is one such model
p E.g., orderings that print 01/11 are allowed, but not 00

• A memory consistency model is a contract between the
hw and sw

− The hw promises to only reorder operations in ways allowed by
the model[硬件承诺]

− In return, the sw acknowledges that all such reorderings are
possible and that is needs to account for them[软件认可]

3
https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Issues of SC[问题]

• SC: just like a switch to select thread to run, and runs its
next event completely

− Events happen in program order

• SC presents a simple programming paradigm
• But, SC reduces potential performance

− Especially in a multiprocessor with a large number of processors
or long interconnect delays

• Simplest way to implement SC
− A processor delays the completion of any memory access until

all the invalidations caused by that access are completed
− Example: for a write miss, four processors share a block

p 170 cycles for write: 50 cycles to establish ownership, then 10 cycles to
issue each invalidate, and 80 cycles for an invalidate to complete and be
acknowledged (50 + 40 + 80)

4

Optimizations[优化]

• Goal: develop a model that is simple to explain and yet
allows a high performance implementation[好理解、高性
能]

• Solution-1: develop ambitious implementations that
preserve SC but use latency-hiding techniques to reduce
the penalty[保持SC、隐藏时延]

• Solution-2: develop less restrictive memory consistency
models that allow for faster hw[放宽顺序要求]

− Such models can affect how the programmer sees the
multiprocessor

5

The Example
• SC maintains a single view of memory

− Cannot run (2) until (1) has become visible to every other
thread

• No reason why (2) needs to wait until (1) completes
− (2): a read from B, (1): a write to A
− They don’t interfere with each other at all

p So should be allowed to run in parallel
− Note that event (1) is very slow

p A very high overhead

• SC greatly hurts performance
− The model should be relaxed!!!

p Event (2) should not wait for (1)

6
https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

The Example (cont.)
• Place write(1) into a store buffer, rather than waiting for it

to become visible
− Then (2) could start immediately, rather than waiting for (1) to

reach the L3
− The store buffer is on-core: very fast to access
− At some time in the future, the cache hierarchy will pull the

write from the store buffer and propagate it through the L3 so
that it becomes visible to other threads

• The buffer helps hide the write latency
• Preserves single-threaded behavior

− Access: store buffer à memory

7
https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Is it still cache coherent?
Is the result correct?

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Total Store Ordering[TSO一致性]

• TSO mostly preserves the same guarantees as SC, except
that it allows the use of store buffers

− There buffers hide write latency, making execution significantly
faster

• Retains ordering among writes (that’s why called ‘total
store ordering’)[保证写顺序]

− Relaxed only the WàR ordering

• Performance gain
− Allow processor to hide latency of writes

when later read is independent

8
https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Total Store Ordering (cont.)
• While boosting performance, TSO allows behaviors that

SC does not
− I.e., programs running on TSO hw can exhibit behavior that

programmers would find suprising

• The example: both threads first check their local store
buffer, but fails to locate and then fetches from memory

− This program can print 00
p B=1 not in Core-1’s buffer
p A=1 not in Core-2’s buffer

− TSO cannot put into practices ???

9
https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Ordering on Different Architectures
• Actually, every modern architecture includes a store

buffer, and so has a memory model at least as weak as
TSO

− x86 specifies a memory model that is very close to TSO
p among the most well-behaved architectures in terms of the crazy

behaviors it allows
− ARM memory model is notoriously underspecified, but is

essentially a form of weak ordering, gives very few guarantees
p RISC-V: “RVWMO” (RISC-V Weak Memory Ordering)
p Weak ordering allows almost any operation to be reordered, good for

hardware optimizations but nightmare to program at the lowest levels

10https://www.cs.utexas.edu/~bornholt/post/memory-models.html
https://kernelgo.org/memory-model.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html
https://kernelgo.org/memory-model.html

Partial Store Ordering[PSO一致性]

• In TSO, only W→R order is relaxed
− The W→W constraint still exists

p Writes by the same thread are not reordered (they occur in program
order)

• In partial store ordering (PSO), W à W is also relaxed

• Example: A and flag are initially 0s
− SC: print ’1’ (when flag is 1, A must be 1 already)
− TSO: print ‘1’ (ditto)
− PSO: may print ‘0’ (when flag is 1, A can be 0 or 1)

11

Thread 1 (on P1)

A = 1;
flag = 1;

Thread 2 (on P2)

while (flag == 0); // spinning if flag is 0
print A;

http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

Aggressive Memory Ordering???
• SC maintains all four memory operation orderings
• Certain orderings can be violated ???

− WàR: store buffer to allow read execute earlier
− WàW: reorder writes in the store buffer

p Earlier write is a cache miss, later is a hit
− RàW, RàR: processor may reorder independent instructions

p Out-of-order execution
− Note that all are valid optimizations if a program consists of a

single instruction stream[对单线程都有效]

• What if we discard all four memory orderings?
− Still a memory consistency model (Release Consistency)

12
http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

Release Consistency[RC一致性]

• Release Consistency (RC)
− Processors support special synchronization operations
− Memory accesses before memory fence instruction must

complete before the fence issues
− Memory accesses after fence cannot begin until fence

instruction is complete
− 硬件不再对一致性做过多保证，需要软件介入以控制执行行为

13

reorderable reads and writes here
...

MEMORY FENCE
...

reorderable reads and writes here
...

MEMORY FENCE

Express Synchronization[同步]

• ’00’ is not allowed in SC (the example)
− Suppose architecture is of RC model, how to get the same effect

with SC (i.e., no ‘00’)?

• All modern architectures include synchronization
operations to bring their relaxed memory models under
control when necessary

− Most common operation: barrier (or fence)

• A barrier inst forces all memory operations before it to
complete before any memory operation after it can begin

− I.e., a barrier inst effectively reinstates SC at a particular point in
program execution

14 FENCE: S1/S2 must be completely done before L1/L2

Synchronized Programs[同步程序]

• Two memory accesses by different processors conflict if
− They access the same memory location
− At least one is a write

• Unsynchronized program
− Conflicting accesses not ordered by synchronization (e.g., a

fence, operation with release/acquire semantics, barrier, etc.)
− Unsynchronized programs contain data races: the output of the

program depends on relative speed of processors (non-
deterministic program results)

• In practice, most programs are synchronized (via locks,
barriers, etc. implemented in synchronization libraries)
• Synchronized programs yield SC results on non-SC

systems[程序在Relaxed Consistency上跑和在SC上跑结果一样]
− Synchronized programs are data-race-free (DRF)

15

Summary: Relaxed Consistency
• Motivation: obtain higher performance by allowing

reordering of memory operations (reordering is not
allowed by SC)

− Relaxed consistency models differ in which memory ordering
constraints they ignore (e.g., TSO, PSO, RC)

• One cost is software complexity: programmer or compiler
must correctly insert synchronization to ensure certain
specific operation orderings when needed

− Optimize for the common case: most memory accesses are not
conflicting, so don’t design a system that pays the cost as if they
are

− But in practice complexities encapsulated in libraries that
provide intuitive primitives like lock/unlock, barrier (or lower
level primitives like fence)

16
http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

Compiler Reordering
• Besides hardware, compilers can also reorder memory

operations
− Example: the program prints
− Possible to optimize the code?

p Loop-invariant code motion: move the write outside the loop
p Dead store elimination: remove X = 0

− These two programs are totally equivalent
p Produce the same output

17

X = 0
for i in range(100):

X = 1
print X

X = 1
for i in range(100):

print X

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

a string of 100 ‘1’s (always)

X = 0
X = 1
for i in range(100):

print X

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Compiler Reordering (cont.)
• Now suppose there’s another thread running in parallel

with the program, and it performs a single write to X
− The first program

p It can print strings like 11101111 …, so long as there’s only one single
zero (because it will reset X = 1 on the next iteration)

− The second program
p It can print strings like 1110000 …, where once it starts printing 0s it

never goes back to 1s
− The first can never print 1110000…; the second cannot print

11011111…

18

X = 1
for i in range(100):

print X

X = 0

X = 0
for i in range(100):

X = 1
print X

X = 0

With parallelism, the compiler optimization no longer produces
an equivalent program.

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

T0

T1

T0

T1

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Languages’ Memory Models[语言内存模型]

• The compiler optimization is effectively reordering
− It’s rearranging (and removing some) memory accesses in ways

that may or may not be visible to programmers

• To preserve intuitive behavior, programming languages
need memory models of their own,

− To provide a contract to programmers about how their memory
operations will be reordered

• Memory consistency at the program level

19
https://www.cs.utexas.edu/~bornholt/post/memory-models.html

The memory model means that C++
code now has a standardized library
to call regardless of who made the
compiler and on what platform it's
running. There's a standard way to
control how different threads talk to
the processor's memory.

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

C++ Atomic[原子操作]

• Multithreading: concurrency, data race, thread sync
• Synchronization primitives: synchronize code to avoid

race conditions in multithreading
− std::mutex: very annoying, be cautious of deadlock
− std::atomic: lock-free, efficient, usually for variables

20https://www.internalpointers.com/post/lock-free-multithreading-atomic-operations
http://www.max-sperling.bplaced.net/?p=1759

std::mutex mtx;
int num = 0;

void inc() {
std::lock_guard<std::mutex> lock(mtx);
num++;

}

int main() {
std::thread t1(inc), t2(inc);
return 0;

}

std::atomic<int> num = 0;

void inc() {
num++;

}

int main() {
std::thread t1(inc), t2(inc);
return 0;

}

https://www.internalpointers.com/post/lock-free-multithreading-atomic-operations
http://www.max-sperling.bplaced.net/?p=1759

C++ Memory Model
• The six memory orders can be combined with each other

to achieve three ordering models
− Sequential consistent ordering: achieves synchronization and

guarantees a single total order
p memory_order_seq_cst

− Acquire-release ordering: implements synchronization, but
does not guarantee global order consistency

p memory_order_acquire / load
p memory_order_release / store
p memory_order_acq_rel / load, store, read-modify-write
p memory_order_consume

− Relaxed ordering: does not implement synchronization, but
only guarantees atomicity

p memory_order_relaxed

21
https://www.sobyte.net/post/2022-06/cpp-memory-order/

https://www.sobyte.net/post/2022-06/cpp-memory-order/

C++ Memory Model (cont.)

22
https://kernelgo.org/memory-model.html

https://kernelgo.org/memory-model.html

Example

23
https://www.sobyte.net/post/2022-06/cpp-memory-order/

std::atomic<bool> x{false}, y{false};

void thread1() {
x.store(true, std::memory_order_relaxed); // (1)
y.store(true, std::memory_order_relaxed); // (2)

}

void thread2() {
while (!y.load(std::memory_order_relaxed)); // (3)
assert(x.load(std::memory_order_relaxed)); // (4)

}

std::atomic<bool> x{false}, y{false};

void thread1() {
x.store(true, std::memory_order_relaxed); // (1)
y.store(true, std::memory_order_release); // (2)

}

void thread2() {
while (!y.load(std::memory_order_acquire)); // (3)
assert(x.load(std::memory_order_relaxed)); // (4)

}

when loop exits, y has been true. I.e., (2) happened

when loop exits, y has been true. I.e., (2) happened;

no determined order between (1) and (2)

(1) happens before (2):
if (2) is visible, then all before release are visible

(3) before (4) è (1) before (4) è (4) never fails

but possible that (1) has not been done à (4) may fail

https://www.sobyte.net/post/2022-06/cpp-memory-order/

Summary of TLP
• Multiprocessors with thread-level parallelism

− Sharing memory, having private caches
• Cache coherence

− Snooping: every cache block is accompanied by the sharing
status of that block

p All cache controllers monitor the shared bus so they can update the
sharing status of the block, if necessary

− Directory-based: a single location (directory) keeps track of the
sharing status of a block of memory

p Reduce storage and communication overheads

• Memory consistency
− Sequential consistency: maintains all four memory operation

orderings (W→R, R→R, R→W, W→W)
− Relaxed consistency: allows certain orderings to be violated

p TSO, PSO, RC

24

Advanced Computer Architecture

高级计算机体系结构

第17讲：Domain Specific Arch (1)
张献伟

xianweiz.github.io
DCS5637, 12/21/2022

https://xianweiz.github.io/

HW Companies Building Custom Chips

26

SW Companies are Building HW

27

Startups Building Custom Hardware

28
https://www.servethehome.com/dell-emc-talks-deep-learning-and-ai-q3-2019/

https://www.servethehome.com/dell-emc-talks-deep-learning-and-ai-q3-2019/

Past General-Purpose[通用]

• Moore’s Law enabled:
− Deep memory hierarchy
− Wide SIMD units
− Deep pipelines
− Branch prediction
− Out-of-order execution
− Speculative prefetching
− Multithreading
− Multiprocessing

• The sophisticated architectures targeted general-purpose
code

− Architects treated code as black boxes
− Extract performance from software that is oblivious to

architecture
29

Domain-Specific Architecture[领域专用]

• Hard to keep improving performance
− More transistors means more power
− Energy budget is limited: higher performance à lower

energy/operation
− Enhancing existing cores may only boost 10% performance

• Need factor of 100 improvements in number of
operations per instruction

− Requires domain specific architectures

30

Domain-Specific Architecture (cont.)
• Computers will be much more heterogeneous[异构]

− Standard processors to run conventional large programs
p E.g., operating system

− Domain-specific processors doing only a narrow range of tasks
p But they do them extremely well

• DSA opportunities[机遇]
− Preceding architecture from the past may not be a good match

to some domains
p E.g., caches are excellenet general-purpose architectures but not

necessarily for DSAs
− Domain-specific algorithms are almost always for small

compute-intensive kernels of larger systems
p DSAs should focus on the subset and not plan to run the entire program

31

DSA Challenges[挑战]

• Architects must expand their areas of expertise
− Must now learn application domains and algorithms

• Nonrecurring engineering (NRE) costs[一次性工程成本]
− Find a target whose demand is large enough to justify allocating

dedicated silicon on an SOC or even a custom chip
p The costs are amortized over the number of chips manufactured, so

unlikely to make economic sense if you need only 1000 chips
− For smaller volume applications, use reconfigurable chips such

as FPGAs
p Several different applications may reuse the same reconfigurable

hardware to amortize costs
p However, the hardware is less efficient than custom chips, so the gains

from FPGAs are more modest

• Port software[移植软件]
− Programming languages and compilers

32

DSA Design Guidelines[设计准则]

• Why guidelines?
− Lead to increased area and energy efficiency
− Provide two valuable bonus effects

p Lead to simpiler designs, reducing the cost of NRE of DSAs
p For user-facing apps, better match the 99th-percentile response-time

deadlines

33

DSA Design Guidelines (cont.)
• Use dedicated memories to minimize the distance over which

data is moved
− Hardware cache à software-controlled scratchpad

p Compiler writers and programmers of DSAs understand their domain
p Software-controlled memories are much more energy efficient

• Invest the resources saved from dropping advanced u-arch
optimizations into more arithmetic units or bigger memories

− Owing to the superior understanding of the execution of programs

• Use the easiest form of parallelism that matches the domain
− Target domains for DSAs almost always have inherent parallelism

p How to utilize that parallelism and how to expose it to the software?
− Design the DSA around the natural granularity of the parallelism and

expose that parallelism simply in the programming model
p SIMD > MIMD (i.e., DLP > TLP), VLIW > OoO

34

DSA Design Guidelines (cont.)
• Reduce data size and type to the simplest needed for the

domain
− Apps in many domains are typically memory-bound, using

narrower data types helps increase the effective memory
bandwidth and on-chip memory utilizations

− Narrower and simpler data also enable to pack more arithmetic
units into the same chip area

• Use a domain-specific programming language to port
code to the DSA

− WRONG: you new arch is so attractive that programmers will
rewrite their code just for you hw

− Fortunately, domain-specific languages were popular even
before architects’ switched attentions

p Halide for vision processing, TensorFlow for DNNs

35

The Trend
• The ABC of AI: Algorithm + Big-data + Computing

36

Example Domain
• Deep neural networks (DNNs)

− Revolutioning many areas of computing today
− Are applicable to a wide range of problems

p So, a DNN-specific arch can be reused for solutions in speech, vision,
language, translation, search ranking, and many more areas

• DNN structure
− Inspired by neuron of the brain

p Each neuron simply computes the sum over a set of products of weights
or parameters and data values
• E.g., pixels for image-processing

− The sum is then put through a nonlinear function to determine
its output

p E.g., f(x) = max(x, 0) --- rectified linear unit (ReLU)
p Output is called activation

• The output of the neuron that has been “activated”
37

DNNs
• Most practitioners will choose an existing design

− Topology
− Data type

• Training (learning)[训练]
− Calculate weights using backpropagation algorithm
− Supervised learning: stochastic gradient descent[随机梯度下降]

• Inference[推理]
− Use neural network for classification

38

Multilayer Perceptron[多层感知机]

• Feed-forward neural networks
− The units are arranged into a graph without any cycles

p so that all the computation can be done sequentially
− Fully connected: every unit in one layer is connected to every

unit in the next layer

• MLP, the original DNNs, is just a vector matrix multiply of
the input vector times the weights array

39

Parameters:
Dim[i]: number of neurons
Dim[i-1]: dimension of input vector
Number of weights: Dim[i-1] x Dim[i]
Operations: 2 x Dim[i-1] x Dim[i]
Operations/weight: 2

Convolutional Neural Network[卷积]

• CNNs are widely used for computer vision applications
• Each layer raises the level of abstraction

− Lines à corners à shapes à …

• Feature map[特征图]: a set of 2D maps produced by each
neural layer

− Each cell is identifying one feature in the area of the input

• Stencil computation[模版计算]: uses neighboring cells in a
fixed pattern to update all the elements of an array

− 循环运算：遍历计算区域，每个位置均执行相同的计算操作

40

Convolutional Neural Network (cont.)
• Parameters:

− DimFM[i-1]: Dimension of the (square) input Feature
Map

− DimFM[i]: Dimension of the (square) output Feature
Map

− DimSten[i]: Dimension of the (square) stencil
− NumFM[i-1]: Number of input Feature Maps
− NumFM[i]: Number of output Feature Maps
− Number of neurons: NumFM[i] x DimFM[i]2

− Number of weights per output Feature Map:
NumFM[i-1] x DimSten[i]2

− Total number of weights per layer: NumFM[i] x
Number of weights per output Feature Map

− Number of operations per output Feature Map: 2 x
DimFM[i]2 x Number of weights per output Feature
Map

− Total number of operations per layer: NumFM[i] x
Number of operations per output Feature Map = 2 x
DimFM[i]2 x NumFM[i] x Number of weights per
output Feature Map = 2 x DimFM[i]2 x Total number
of weights per layer

− Operations/Weight: 2 x DimFM[i]2

41

Recurrent Neural Network[循环]

• Popular for speech recognition on language translations
• RNNs can remember facts

− Long short-term memory (LSTM) network

42
English to Spanish translation

Recurrent Neural Network (cont.)
• Parameters:

− Number of weights per cell:
3 x (3 x Dim x Dim)+(2 x Dim
x Dim) + (1 x Dim x Dim) =
12 x Dim2

− Number of operations for
the 5 vector-matrix
multiplies per cell: 2 x
Number of weights per cell
= 24 x Dim2

− Number of operations for
the 3 element-wise
multiplies and 1 addition
(vectors are all the size of
the output): 4 x Dim

− Total number of operations
per cell (5 vector-matrix
multiplies and the 4
element-wise operations):
24 x Dim2 + 4 x Dim

− Operations/Weight: ~2

43

Example Domain: DNNs
• Batches[批]

− Reuse weights once fetched from memory across multiple
inputs

p Increases operational intensity

• Quantization[量化]
− Numerical precision is less important for DNNs than for many

applications
p Use 8- or 16-bit fixed point

• Summary: need the following kernels
− Matrix-vector multiply
− Matrix-matrix multiply
− Stencil
− ReLU
− Sigmoid
− Hyperbolic tangent[双曲正切]

44

Tensor Processing Unit (TPU)
• Google’s first custom ASIC DSA for WSCs

− Its domain is the inference phase of DNNs
− It is programmed using the TensorFlow framework
− The first TPU was been deployed in 2015

p Originated as far back as 2006, to improve perf by 10x over GPUs

45

TPU Chip Overview
• TPU chip is half the size of the other chips

− 28 nm process with a die size ≤ 331 mm2

− This is partially due to simplification of control logic

• Floor plan of TPU die
− 50%+ on arithmetic

and memory

46

TPU Architecture[架构]

• A coprocessor on the PCIe I/O bus
• A large software-managed on-chip memory

47
https://www.anandtech.com/show/11749/hot-chips-google-tpu-performance-analysis-live-blog-3pm-pt-10pm-utc

https://www.anandtech.com/show/11749/hot-chips-google-tpu-performance-analysis-live-blog-3pm-pt-10pm-utc

TPU ISA[指令]

• The host CPU sends TPU instructions over the PCIe bus
into an instruction buffer[指令发送]

− TPU has no PC, and it has no branch instructions
− 5 main (CISC) instructions (11 in total)

p Other 6: alternate host memory read/write, set configuration, two
versions of synchronization, interrupt host, debug-tag, nop and halt

• Instruction execution[指令执行]
− Average clock cycles per instruction: > 10
− 4-stage overlapped execution, 1 instruction type/stage

p Execute other instructions while matrix multiplier busy

• Complexity in software[软件复杂性]
− No branches, in-order issue
− SW controlled buffers, SW controlled pipeline synchronization

48
https://www.anandtech.com/show/11749/hot-chips-google-tpu-performance-analysis-live-blog-3pm-pt-10pm-utc

https://www.anandtech.com/show/11749/hot-chips-google-tpu-performance-analysis-live-blog-3pm-pt-10pm-utc

TPU ISA (cont.)
• Read_Host_Memory

− Reads data from the CPU memory into the unified buffer
• Read_Weights

− Reads weights from the Weight Memory into the Weight FIFO as
input to the Matrix Unit

• MatrixMultiply/Convolve
− Perform a matrix-matrix multiply, a vector-matrix multiply, an

element-wise matrix multiply, an element-wise vector multiply, or a
convolution from the Unified Buffer into the accumulators

p Takes a variable-sized B*256 input, multiplies it by a 256x256 constant
input, and produces a B*256 output, taking B pipelined cycles to complete

• Activate
− Computes activation function

• Write_Host_Memory
− Writes data from unified buffer

into host memory
49

TPU Microarchitecture[微架构]

• The u-arch philosophy of TPU is to keep the Matrix
Multiply Unit busy

− Hide the execution of the other insts by overlapping with the
MatrixMultiply inst

p Each of the other 4 insts have separate execution hw

• Problem: energy/time for repeated SRAM accesses of
matrix multiply

− Solution: “Systolic execution” to compute data on the fly in
buffers by pipelining control and data[脉动阵列执行]

50 脉动阵列 -因Google TPU获得新生 ,
https://zhuanlan.zhihu.com/p/26522315

https://zhuanlan.zhihu.com/p/26522315

TPU Software[软件]

• Software stack had to be compatible with CPUs/GPUs[兼容]
− So that applications could be ported quickly
− The portion of the app run on the TPU is typically written using

TensorFlow and is compiled into an API that can run on CPUs/GPUs

• Like GPUs, the TPU stack is split into[分层]
− Kernel Driver: lightweight and handles only memory management

and interrupts
p Designed for long-term stability

− Use Space Driver: changes frequently, and
handles the following

p Sets up and controls TPU execution
p Reformats data into TPU order
p Translates API calls into TPU insts and turns

them into an app binary

51

How TPU Follows the Guidelines
• Use dedicated memories

− 24 MB dedicated buffer, 4 MB accumulator buffers

• Invest resources in arithmetic units and dedicated
memories

− 60% of the memory and 250X the arithmetic units of a server-
class CPU

• Use the easiest form of parallelism that matches the
domain

− Exploits 2D SIMD parallelism

• Reduce the data size and type needed for the domain
− Primarily uses 8-bit integers

• Use a domain-specific programming language
− Uses TensorFlow

52

TPU Performance[性能]

53

• Compare using six benchmarks
− Representing 95% of TPU inference workload in Google data

center in 2016
− Typically written in TensorFlow, pretty short (100-1500 LOCs)

• Chips/servers being compared
− CPU server: Intel 18-core, dual-socket Haswell; host server for

GPUs/TPUs
− GPU accelerator: Nvidia K80

