140 EIRER BT Mo

N GUANGZHOU

Advanced Computer Architecture

Bt HOHL AR &R S5

179E: TLP (3)
i NGE

xianweiz.github.io
DCS5637,12/21/2022

3
AR
UHGJ‘

https://xianweiz.github.io/

Review Questions

* Limits of snooping protocol
Broadcast-based, hard to scale for many processors.

* For directory-based protocol, what is the entry content?
Dirty bit + presence bits.

* Explain the storage overhead of dir-protocol?
One entry per memory line, presence bits for all nodes/processors.

* Schemes to reduce storage overhead?
Limited pointer scheme (P), sparse directory (M).

* What is ‘home node’ in dir-protocol?
Node with memory holding the corresponding data for the line

e Coherence vs. consistency?
Same vs different location, eventually vs when, cache vs. mem, ...

(3R ¢
(B) 7 WL
\%) L
avus/ SUN YAT-SEN UNIVERSITY ‘ (A

Memory Consistency Model[—# i

* Memory consistency model (or just “memory model”)
defines the allowed orderings of multiple threads on a
multiprocessor

— SCis one such model
o E.g., orderings that print 01/11 are allowed, but not 00

* A memory consistency model is a contract between the
hw and sw

— The hw promises to only reorder operations in ways allowed by
the model[figif} 7K]

- In return, the sw acknowledges that all such reorderings are
possible and that is needs to account for them[# 41\ 7]]

Thread 1 Thread 2
m A =1 3) B = 1
2) print(B) () print(A)

3 D

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Issues of SC[ja] i)

* SC: just like a switch to select thread to run, and runs its
next event completely B @) FE

— Events happen in program order)/%J\Q
S

* SC presents a simple programming paradigm o

e But, SC reduces potential performance

— Especially in a multiprocessor with a large number of processors
or long interconnect delays

e Simplest way to implement SC

— A processor delays the completion of any memory access until
all the invalidations caused by that access are completed

- Example: for a write miss, four processors share a block

o 170 cycles for write: 50 cycles to establish ownership, then 10 cycles to
issue each invalidate, and 80 cycles for an invalidate to complete and be
acknowledged (50 + 40 + 80)

[~‘y * | ¥

(&) T b {L ki
() 7
/ SUN YAT-SEN UNIVERSITY ’ (A

Optimizations[it]

* Goal: develop a model that is simple to explain and yet
allows a high performance implementation[47 ¥ f#. =
A

* Solution-1: develop ambitious implementations that
preserve SC but use latency-hiding techniques to reduce
the penalty[fRHFSC. [EhEHT LE]

* Solution-2: develop less restrictive memory consistency

models that allow for faster hw{[73 %% i J7 23K]

— Such models can affect how the programmer sees the
multiprocessor

‘ ' ‘| J‘
(2 £ ‘l’

\% &) 4
v$/ SUN YAT-SEN UNIVERSITY ‘ ? ‘

The Example

* SC maintains a single view of memory
— Cannot run (2) until (1) has become visible to every other
thread
* No reason why (2) needs to wait until (1) completes
— (2): aread from B, (1): a write to A

— They don’t interfere with each other at all
o So should be allowed to run in parallel

. Thread 1 Thread 2
- Note that event (1) is very slow o -
o A very high overhead o BRI E(E) « [BEENTCA)
e SC greatly hurts performance
— The model should be relaxed!!! i
o Event (2) should not wait for (1)
L1 Cache L1 Cache
(L2 Cache] [L2 Cache J
L3 Cach
@ Tux% . o

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

The Example (cont.)

* Place write(1) into a store buffer, rather than waiting for it
to become visible

— Then (2) could start immediately, rather than waiting for (1) to
reach the L3

— The store buffer is on-core: very fast to access

— At some time in the future, the cache hierarchy will pull the
write from the store buffer and propagate it through the L3 so

that it becomes visible to other threads Thread 1 Thread 2
. . WA=1 3B =1
* The buffer helps hide the write latency /& erint® (@ Print(A)
* Preserves single-threaded behavior
— Access: store buffer 2 memory core2
Is i'L still calche cohet;ent? — =
Is the result correct: (T] [e J

L3 Cache
@Tsx2 ! Tl

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Total Store Ordering[Tso— %]

* TSO mostly preserves the same guarantees as SC, except
that it allows the use of store buffers

— There buffers hide write latency, making execution significantly
faster

* Retains ordering among writes (that’s why called ‘total
store ordering’)[£R1UE 5]
— Relaxed only the W—>R ordering

Thread 1 Thread 2
° ' WA=1 @B =1
Performance gain e o
— Allow processor to hide latency of writes ~ N
when later read is independent
Write A Write A sored
Read B
s [L1 Cache L1 Cache
Read B
(L2 Cache j [L2 Cache J
L3 Cache

8

https://www.cs.utexas.edu/~bornholt/post/memory-models.html P\’

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Total Store Ordering (cont.)

* While boosting performance, TSO allows behaviors that
SC does not

- |l.e., programs running on TSO hw can exhibit behavior that
programmers would find suprising

* The example: both threads first check their local store
buffer, but fails to locate and then fetches from memory

— This program can print 00 RESaRE Hitreads
A ‘Bt
o B=1 not in Core-1’s buffer @ print(B) @ print(A)
o A=1 not in Core-2’s buffer - ~ - N
— TSO cannot put into practices ??7?
Corel Core2

Memory
A=0 B=0

https://www.cs.utexas.edu/~bornholt/post/memory-models.html g R

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Ordering on Different Architectures

* Actually, every modern architecture includes a store
buffer, and so has a memory model at least as weak as
TSO

— x86 specifies a memory model that is very close to TSO

o among the most well-behaved architectures in terms of the crazy
behaviors it allows

- ARM memory model is notoriously underspecified, but is
essentially a form of weak ordering, gives very few guarantees
o RISC-V: “RVWMO” (RISC-V Weak Memory Ordering)

o Weak ordering allows almost any operation to be reordered, good for
hardware optimizations but nightmare to program at the lowest levels

Architecture Memory Model
x86 64 Total Store Order
Sparc Total Store Order
ARMvVS8 Weakly Ordered
PowerPC Weakly Ordered

MIPS Weakly Ordered

(4]
https://www.cs.utexas.edu/~baraholt/post/memory-models.html b IE{
https://kernelgo.org/memory-model.html »IN

https://www.cs.utexas.edu/~bornholt/post/memory-models.html
https://kernelgo.org/memory-model.html

Partial Store Ordering[pso— 4]

* In TSO, only W—>R order is relaxed

— The W—>W constraint still exists

o Writes by the same thread are not reordered (they occur in program
order)

* |n partial store ordering (PSO), W - W is also relaxed

* Example: A and flag are initially Os
- SC: print ’1” (when flag is 1, A must be 1 already)
- TSO: print ‘1’ (ditto)
- PSO: may print ‘0’ (when flagis 1, A can be O or 1)

Thread 1 (on P1) Thread 2 (on P2)

A=1; while (flag == 0); // spinning if flag is 0
flag=1; print A;

1< E) 11 -‘imi
e/ sov wrsevonvesity hitpy: //15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12 consistency/12 consistency slides.pdf 24\ B

http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

Aggressive Memory Ordering???

* SC maintains all four memory operation orderings

* Certain orderings can be violated ???

- W=2>R: store buffer to allow read execute earlier

- W>W: reorder writes in the store buffer
o Earlier write is a cache miss, later is a hit

- R2>W, R—=2>R: processor may reorder independent instructions
o Out-of-order execution

- Note that all are valid optimizations if a program consists of a
single instruction stream[X} B 28 FE &H XX

 What if we discard all four memory orderings?
- Still a memory consistency model (Release Consistency)

g El ‘IEJL
e/ sov wrsevonvesity hitpy: //15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12 consistency/12 consistency slides.pdf 44

http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

Release Consistency[RC— 3]

e Release Consistency (RC)
— Processors support special synchronization operations

- Memory accesses before memory fence instruction must
complete before the fence issues

- Memory accesses after fence cannot begin until fence
instruction is complete

- SRR — SO 2 ARIIE, 7 ZEEAR N N DA HIPATAT Y

reorderable reads and writes here
MEMOF'R'\.(FENCE

reorderable reac;s: and writes here

MEMORY FENCE

AR *
(D) % B 13
{2 i
%
N U SUN YAT-SEN UNI' 'Y

Express Synchronization[[A:5)

* ‘00’ is not allowed in SC (the example)
— Suppose architecture is of RC model, how to get the same effect
with SC (i.e., no ‘00’)?

* All modern architectures include synchronization
operations to bring their relaxed memory models under
control when necessary

- Most common operation: barrier (or fence)

* A barrier inst forces all memory operations before it to
complete before any memory operation after it can begin

- |.e., a barrier inst effectively reinstates SC at a particular point in
program execution

Thread 1 Thread 2

S1: Store x = NEW; | S2: Store y = NEW;
(1) EE———— (3) IE= FENCE FENCE
2) print(B) (4) print(A) Lli: Load rl1 = v; L2: Load r2 = x;

FENCE: S1/S2 must be completely done before L1/L2

Synchronized ProgramsilF 52+

* Two memory accesses by different processors conflict if
— They access the same memory location .07 i
— At least one is a write Rk

* Unsynchronized program

— Conflicting accesses not ordered by synchronlzatlon (e.g., a
fence, operation with release/acquire semantics, barrier, etc.)

- Unsynchronized programs contain data races: the output of the
program depends on relative speed of processors (non-
deterministic program results)

* In practice, most programs are synchronized (via locks,
barriers, etc. implemented in synchronization libraries)

* Synchronized programs yield SC results on non-SC
systems|[F% 7 7 Relaxed Consistency [i FIFESC I I 45 B —FE]

- Synchronized programs are data-race-free (DRF)

Summary: Relaxed Consistency

* Motivation: obtain higher performance by allowing
reordering of memory operations (reordering is not
allowed by SC)

— Relaxed consistency models differ in which memory ordering
constraints they ignore (e.g., TSO, PSO, RC)

* One cost is software complexity: programmer or compiler
must correctly insert synchronization to ensure certain
specific operation orderings when needed

— Optimize for the common case: most memory accesses are not
conflicting, so don’t design a system that pays the cost as if they
are

- But in practice complexities encapsulated in libraries that
provide intuitive primitives like lock/unlock, barrier (or lower
level primitives like fence)

"Gi
oo/ sov wrsevonvessiry tty: / /154 18.courses.cs.cmu.edu/tsinghua2017content/lectures/12 consistency/12 consistency slides.pdf 44

http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

Compiler Reordering

* Besides hardware, compilers can also reorder memory
operations
— Example: the program prints a string of 100 ‘1’s (always)
— Possible to optimize the code?

o Loop-invariant code motion: move the write outside the loop
o Dead store elimination: remove X =0

— These two programs are totally equivalent
o Produce the same output

X=0 X=1
foriin range(100): foriin range(100):
X=1 x=5 print X
print X X=1
foriin range(100):
print X

ot Dhig:

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Compiler Reordering (cont.)

* Now suppose there’s another thread running in parallel
with the program, and it performs a single write to X

— The first program

o It can print strings like 11101111 ..., so long as there’s only one single
zero (because it will reset X = 1 on the next iteration)

— The second program

o It can print strings like 1110000 ..., where once it starts printing Os it
never goes back to 1s

— The first can never print 1110000...; the second cannot print

11011111... With p?rallelism, the compiler optimization no longer produces
an equivalent program.
X=0 X=1
foriin range(100): T0 foriin range(100):
X=1 print X
print X
T1 X=0 T1 X=0

L8 e

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Languages’ Memory Modelsizzpim)

* The compiler optimization is effectively reordering

- It’s rearranging (and removing some) memory accesses in ways
that may or may not be visible to programmers

* To preserve intuitive behavior, programming languages
need memory models of their own,

— To provide a contract to programmers about how their memory
operations will be reordered

* Memory consistency at the program level

std:memory_order

Defined in header <atomic>

typedef d
The memory model means that C++ o gt Al
. . memory_order_consume,
code now has a standardized library memory order acquire, (since C++11)
memory order_release, (until C++20)
to call regardless of who made the memory_order_acq_rel,
. - memory order_seq cst
compiler and on what platform it's } memory_order;
B 7 enum class memory order : /*unspecified*/ {
running. There Sa Standard way to ; relaxed, consume, acquire, release, acq rel, seq cst
control how different threads talk to inline constexpr memory order memory order relaxed = memory order::relaxed;
@n%ine constexpr memory_orger memory_orger_consqme = memory_orger::consqme; (since C++20)
1 inline constexpr memory order memory order acquire = memory order::acquire;
the processor s memaory. inline constexgr memorz:order memorz:order:re%ease = memor¥_order::re%ease;

inline constexpr memory order memory order acq rel = memory order::acq rel;
inline constexpr memory order memory order_seq_cst = memory order::seq_cst;

19 | _“-gi
https://www.cs.utexas.edu/~bornholt/post/memory-models.html 4

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

C++ Atomic[JF FH4E)]

* Multithreading: concurrency, data race, thread sync

* Synchronization primitives: synchronize code to avoid
race conditions in multithreading
- std::mutex: very annoying, be cautious of deadlock
- std::atomic: lock-free, efficient, usually for variables

std: :mutex mtx; std: :atomic<int> num = 0;
int num = 0;
void inc() {

void inc() { NUM++

std: :lock_guard<std: :mutex> lock(mtx); 1

num++;
} int main() {

std: :thread t1(inc), t2(inc);

int main() { return 0;

std: :thread t1(inc), t2(inc); 1

return 0;
¥

https://www.internaIpointers.com/post/lzrcj(—free—muItith reading-atomic-operations
http://www.max-sperling.bplaced.net/?p=1759

w;‘gi

https://www.internalpointers.com/post/lock-free-multithreading-atomic-operations
http://www.max-sperling.bplaced.net/?p=1759

C++ Memory Model

* The six memory orders can be combined with each other
to achieve three ordering models

— Sequential consistent ordering: achieves synchronization and
guarantees a single total order
o memory_order_seq_cst
— Acquire-release ordering: implements synchronization, but
does not guarantee global order consistency

o memory_order_acquire / load

o memory_order_release / store

o memory_order_acq_rel / load, store, read-modify-write
o memory_order_consume

- Relaxed ordering: does not implement synchronization, but

HP typedef enum memory order {
only guarantees atom|C|ty memory order relaxed,
memory order consume,
o memory_order_relaxed memory_order acquire,

memory order release,
memory order acq rel,
memory order seq cst

21 } memory order; LE
[L
https://www.sobyte.net/post/2022-06/cpp-memory-order/ P -

https://www.sobyte.net/post/2022-06/cpp-memory-order/

C++ Memory Model (cont.)

strict

seq._cst total order (SC for DRF code)

release /acquire

}message passing
release /consume

relaxed no synchronization
relaxed

BEAE & SR

memory order relaxed X HRA T NG AU] DR AIE

memory_order_consume AL, A RSA RAR R T RB M
Y, IRFEAA e e R T

memory order acquire AR, A G S R E DITEAR SR R F
PR e U AT

memory_order release ALRET, A ZH S 3R SR A RE T
AR THRAE

memory order acq rel [By £ & memory_order acquirefil
memory order releasefRric

memory order seq cst TR BRI A T

22 Uil
https://kernelgo.org/memory-model.html A

https://kernelgo.org/memory-model.html

Example

std::atomic<bool> x{false}, y{false};

void threadi() {
x.store(true, std::memory_order_relaxed); // (1)
y.store(true, std::memory_order_relaxed); // (2)

}

no determined order between (1) and (2)

void thread?2() {
while (ly.load(std::memory_order_relaxed)); // (3) when loop exits, y has been true. l.e., (2) happened;

assert(x.load(std::memory_order_relaxed)); // (4) but possible that (1) has not been done = (4) may fail
}

std::atomic<bool> x{false}, y{false};

void threadi() {
x.store(true, std::memory_order_relaxed); // (1)
y.store(true, std::memory_order_release); // (2)

}

(1) happens before (2):
if (2) is visible, then all before release are visible

void thread?2() {
while (ly.load(std::memory_order_acquire)); // (3) when loop exits, y has been true. l.e., (2) happened
assert(x.load(std::memory_order_relaxed)); // (4) (3) before (4) =» (1) before (4) = (4) never fails

23 I .ﬂ
https://www.sobyte.net/post/2022-06/cpp-memory-order/ Py z

https://www.sobyte.net/post/2022-06/cpp-memory-order/

Summary of TLP

* Multiprocessors with thread-level parallelism
— Sharing memory, having private caches

e Cache coherence

- Snooping: every cache block is accompanied by the sharing
status of that block

o All cache controllers monitor the shared bus so they can update the
sharing status of the block, if necessary

- Directory-based: a single location (directory) keeps track of the
sharing status of a block of memory

o Reduce storage and communication overheads

* Memory consistency

- Sequential consistency: maintains all four memory operation
orderings (W—->R, R->R, R>W, W->W)

— Relaxed consistency: allows certain orderings to be violated
o TSO, PSO, RC

(3R ¢
(B) 7 WL
\%) L
avus/ SUN YAT-SEN UNIVERSITY ‘ (A

M[ﬂg lﬂ%’&ﬂﬁl‘l‘ﬁf" b R s

ATIONAL SUPERCOMPUTE TER IN GUANGZHOU

Advanced Computer Architecture

Bt HOHL AR &R S5

St

—1

Z

—

\)

171H:

Domain Specific Arch (1)
ANLINGE

xianweiz.github.io
DCS5637,12/21/2022

w:i@i

https://xianweiz.github.io/

HW Companies Building Custom Chips

ANNOUNCING
NVIDIA BLUEFIELD-2 DPU

Data Center Infrastructure-on-a-Chip

@

Ascend 910
Meet the world's most powerful Al processor *

HHREMAILIERS — FEO10IEVESR

< INTEL” NERVANA™
-~ IEUBAL NETWORK PROCESSD

o 3, . FORINFERENCE

Innovation from the Data Center to the Edge

b HUAWEI

Leadership x86 CPU
Industry’s best x88 compute

engnes driving leadarship from
Entorprise 1o Cloud to HPC

SUN YAT-SEN UNIVERSITY

00N

FPGA Accaleration

Adaptive Acceleration

Leadership FPGAS, accalerators

and Adaptive SOCs enabling
emerging workioad acceleration,
from Al to sman networking and

software-defined infrastructure

AMDD

CDNA

CDNA-Optimized
Dense Compute
High-performance engne for
HPC, Artificial Intelligence, Big
Data Analytics

SW Companies are Bmldmg HW

Chips Off the Old Block: Computers Are
Taking Design Cues From Human Brains
(September 16, 2017)

After training a speech-recognition algorithm,

for example, Microsoft offers it up as an online

service, and it actually starts identifying - S T e
commands that people speak into their S
smartphones. G.P.U.s are not quite as :
efﬁci:nt during this stage of :‘he process. AWS Inferentia
So, many companies are now building

chips specifically to do what the other

chips have learned.

Google built its own specialty chip, a Tensor
Processing Unit, or T.P.U. Nvidia is building a
similar chip. And Microsoft has
reprogrammed specialized chips from E = :
Altera, which was acquired by Intel, so that it N\ . =7 : Ee"

too can run neural networks more easily.) - W;—aauemguag

Startups Building Custom Hardware

s

e

Tech Giants/System
Google

B® Microsoft

aws

Il

Alibaba (
PP

HUAWEI
(]
BaiN o

T

==l
Hewlett Pack
Enterprise

P
FUJITSU

<

Western Digital.
NOKIA

()

o
Al Chip Landscape S.T.
IC Vender/Fabless — Startup in China - Startup Worldwide IP/Design Sevice —
(in/t;D Cambricon @ FPGA arm
SNMSUNG Wazs n ‘ SYNopsys
BITMAIN Reftanhe "0
@ nviDIA.
intell Tusion Graphcore Processing in Memory imagination
Quaic =xae
< Think Force CEVA
AMDQD1
gt Zhabana cadence
£ XILINX. NextvPu ooy
e 4 Lol L Optical Computing Bsirive
T UNISOC (IE""ome €8 thinci _ l[/" ARTERISIT
B
4) €y kaLRAY 88 LIGHTMATTER R cortec
o groq Design service with
s In-house IP
. neuromorphic
~»~-=w‘f-: Ze5E § oty @smaon
Automated Driving e =
“\ Esperanto :
X — & brainchip © BROADCOM
mart Voice
Q}b«s _ PEZY Computing P Risferred SLe
alkchip
RENESAS [Rokid| M Eta Compute (@fieron %
TOSHIBA SPESCH B4 - & FARADAY
EERI E GREEN &
o7 S TRR S ;
More on https://basicmi.github.io/Al-Chip/
Compilers Benchmarks
‘ > L4 - i
F TensorFlow & O GLOW L. @ANVIDIA. TensorR] MLPerf AI - Benchmark Al Matrix.
AN\VAN > ';1"‘ DAWNBench

Boiiavi

nGraph

28 ATEEmGNRSE

All information contained within this infographic is gathered from the internet and periodically updated, no guarantee is given that the information provided is correct, complete, and up-to-date.
AL

5 | ™ *~"7
SUN YAT-SEN UNIVERSITY

https://www.servethehome.com/dell-emc-talks-deep-learning-and-ai-93-2019/

L£

https://www.servethehome.com/dell-emc-talks-deep-learning-and-ai-q3-2019/

Past General-Purposeri#]

* Moore’s Law enabled:
— Deep memory hierarchy
- Wide SIMD units
— Deep pipelines
— Branch prediction
— Out-of-order execution
— Speculative prefetching
- Multithreading 1
- Multiprocessing

40 years of Processor Performance

e vs. VAX11-780

Performanc

- cisc

iy 2X13.5yrs
(22%Hy)

* The sophisticated architectures targeted general-purpose
code
— Architects treated code as black boxes
— Extract performance from software that is oblivious to

architecture A
Dtuxs 29 g

Domain-Specific Architecture4isi %

* Hard to keep improving performance
— More transistors means more power

— Energy budget is limited: higher performance - lower
energy/operation

- Enhancing existing cores may only boost 10% performance

* Need factor of 100 improvements in number of
operations per instruction

- Requires domain specific architectures

10-50X improvement 100-1000X improvement

].1 in TOPS & TOPS /W In TOPS & TOPS /W
S,

Frequency/Ease of Use

. Performance / Power Efficiency

L

Domain-Specific Architecture (cont.)

* Computers will be much more heterogeneous[5#4]
— Standard processors to run conventional large programs
o E.g., operating system
— Domain-specific processors doing only a narrow range of tasks
o But they do them extremely well

* DSA opportunities[HLi]
- Preceding architecture from the past may not be a good match
to some domains

o E.g., caches are excellenet general-purpose architectures but not
necessarily for DSAs

— Domain-specific algorithms are almost always for small
compute-intensive kernels of larger systems

o DSAs should focus on the subset and not plan to run the entire program

‘ ' ‘| J‘
(2 £ ‘l’

\% &) 4
v$/ SUN YAT-SEN UNIVERSITY ‘ ? ‘

DSA Challenges[#ki#]

* Architects must expand their areas of expertise
— Must now learn application domains and algorithms

* Nonrecurring engineering (NRE) costs[— XM T2 5 4]
- Find a target whose demand is large enough to justify allocating
dedicated silicon on an SOC or even a custom chip

o The costs are amortized over the number of chips manufactured, so
unlikely to make economic sense if you need only 1000 chips

— For smaller volume applications, use reconfigurable chips such
as FPGAs

o Several different applications may reuse the same reconfigurable
hardware to amortize costs

o However, the hardware is less efficient than custom chips, so the gains
from FPGAs are more modest

* Port software[# i # /4]
- Programming languages and compilers

(3R ¢
(B) 7 WL
\%) L
avus/ SUN YAT-SEN UNIVERSITY ‘ (A

DSA Design Guidelines[#it)

* Why guidelines?
- Lead to increased area and energy efficiency

— Provide two valuable bonus effects

9@th Percentile Value

HTTP Request

== Response Time

o Lead to simpiler designs, reducing the cost of NRE of DSAs

o For user-facing apps, better match the 99th-percentile response-time
deadlines

Guideline

TPU

Catapult

Crest

Pixel Visual Core

Design target

Data center ASIC

Data center FPGA

Data center ASIC

PMD ASIC/SOC IP

1. Dedicated 24 MiB Unified Buffer, Vanes N.A Per core: 128 KiB line

memones 4 MiB Accumulators buffer, 64 KiB P.E.
memory

2. Larger 65,536 Mulaply- Vanes N.A Per core: 256 Multiply-
anthmetic unit accumulators accumulators (512 ALUs)

3. Easy Single-threaded, SIMD, SIMD, MISD N.A. MPMD, SIMD, VLIW
parallelism in-order

4. Smaller data 8-Bit, 16-bit integer 8-Bit, 16-bit integer 21-bit H. P. 8-bit, 16-bit, 32-bit integer
size 32-bit Fl. PL

5. Domain- TensorFlow Venlog TensorFlow Halide/TensorFlow
snecific lane.

AR - 33

DSA Design Guidelines (cont.)

* Use dedicated memories to minimize the distance over which
data is moved
— Hardware cache = software-controlled scratchpad

o Compiler writers and programmers of DSAs understand their domain
o Software-controlled memories are much more energy efficient

* Invest the resources saved from dropping advanced u-arch
optimizations into more arithmetic units or bigger memories

— Owing to the superior understanding of the execution of programs

e Use the easiest form of parallelism that matches the domain
— Target domains for DSAs almost always have inherent parallelism
o How to utilize that parallelism and how to expose it to the software?

— Design the DSA around the natural granularity of the parallelism and
expose that parallelism simply in the programming model

o SIMD > MIMD (i.e., DLP > TLP), VLIW > 000

"“ i) } ’
/ ivﬁnwﬁ % 34 u"lﬂi

DSA Design Guidelines (cont.)

* Reduce data size and type to the simplest needed for the
domain

— Apps in many domains are typically memory-bound, using
narrower data types helps increase the effective memory
bandwidth and on-chip memory utilizations

- Narrower and simpler data also enable to pack more arithmetic
units into the same chip area

e Use a domain-specific programming language to port
code to the DSA

— WRONG: you new arch is so attractive that programmers will
rewrite their code just for you hw

- Fortunately, domain-specific languages were popular even
before architects’ switched attentions

o Halide for vision processing, TensorFlow for DNNs

s “‘ . (Il
: iv&mﬁsﬁ 35 u' ‘IG \2

The Trenad

* The ABC of Al: Algorithm + Big-data + Computing

EXPLODING MODEL COMPLEXITY

>
30,000X in 5 Years | Now Doubling Every 2 Months 180 17528
1.E+04 #49
@ GPT-3
140
1.E+03 *'. Megatron-BERT
i o g 120
o 1.E+02 Megatron-GPT2 .‘ Turing NLG
2 GPT.. @ § 100
) 1.E+01 " 5
L BERT @ : 80
o 1.E+00 b
‘?"3 ResNet 60
& 1E0 oo o®
ce®® 40
AlexNet _ oe®
LE02 oo 55 I
1.E-03 " ,—7LL-LIJ7,I L - =
2012 2014 2017 2020 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

&
ma

) F bk %

SUN YAT-SEN UNIVERSITY

Example Domain

* Deep neural networks (DNNs)
— Revolutioning many areas of computing today

— Are applicable to a wide range of problems

o So, a DNN-specific arch can be reused for solutions in speech, vision,
language, translation, search ranking, and many more areas

* DNN structure

— Inspired by neuron of the brain

o Each neuron simply computes the sum over a set of products of weights
or parameters and data values

* E.g., pixels for image-processing

— The sum is then put through a nonlinear function to determine
its output

o E.g., f(x) = max(x, 0) --- rectified linear unit (ReLU)

n,

. out
in,

o Output is called activation
* The output of the neuron that has been “activated”

(3R ¢
(B) 7 WL
\%) L
avus/ SUN YAT-SEN UNIVERSITY ‘ (A

in
n

DNNSs

* Most practitioners will choose an existing design
— Topology
— Data type
* Training (learning)[I %]
— Calculate weights using backpropagation algorithm
— Supervised learning: stochastic gradient descent[FEALESE T F4F]

* Inference[#E#]
— Use neural network for classification

To=X Ty T
) (Input Layer) Hidden Layer 1) (Hidden Layer 2) jen Laye
Q: [’ . ® & Name DNN layers Weights Operations/Weight
Q \ / //,. .\ , MLPO 5 20M 200
WERSAA 2 N7 NS Va4 = .
-® \Fy}:\(,g%. @ / @ .\1{.1’1 4 _.m 168
PONKXAK OO LSTMO 58 52M &4
O//// AN @ FNN . b4 ‘ LSTMI 56 34M 9%
/LN RIS REN CNNO 16 8™ 2888
“0 /%/ \)}\\'./ _,-—i' ‘///_/)(\\ ,,-"’ _ — o
Y>> \\. > ./ N CNNI 89 100M 1750
o — & @& @

38 Dy

Multilayer Perceptron(z ZE%n#1]

* Feed-forward neural networks

— The units are arranged into a graph without any cycles
o so that all the computation can be done sequentially

— Fully connected: every unit in one layer is connected to every
unit in the next layer

* MLP, the original DNNSs, is just a vector matrix multiply of
the input vector times the weights array

Layerfi-1] Layerfi]
i 2] Parameters:
- ia “ T Dimi) Dim[i]: number of neurons
%MQJ_,(B&\;_. Output Dim[i-1]: dimension of input vector
4 ;' [/] Number of weights: Dim[i-1] x Dim[i]
imy/

Operations: 2 x Dim[i-1] x Dim[i]

| Operations/weight: 2
Weights

1
N\
Dim(i-1]

AE - orl
(@) T X% 39 MGJ‘

Convolutional Neural Network[Z:#]

* CNNs are widely used for computer vision applications

* Each layer raises the level of abstraction
— Lines = corners = shapes =2 ...

* Feature map[451-Kl]: a set of 2D maps produced by each
neural layer
— Each cell is identifying one feature in the area of the input

* Stencil computation[i)k it]: uses neighboring cells in a
fixed pattern to update all the elements of an array
- fE B T X, t/\uﬁiﬁ%ﬂﬁﬁaﬂﬁﬁﬁﬁw’ﬁ

Input image Output fea

X| Vector matrix multiply !
AN 1N | [
(&) F X % P | s
o ‘ SUN YAT-SEN UNIVERSITY | \ ntf," Nonlinear functio ” | N’ ‘

Convolutional Neural Network (cont.)

e Parameters:

- DimFM][i-1]: Dimension of the (square) input Feature

Layerfi-1] Layeri] Map
input feat output feat . I .
R A e - DimFM][i]: Dimension of the (square) output Feature

— l/// Map
7 ~ DimSten[i]: Dimension of the (square) stencil
- NumFM][i-1]: Number of input Feature Maps

NumFM[/]

- NumFM][i]: Number of output Feature Maps

NumFM[i-1]

- Number of neurons: NumFM][i] x DimFM[i]?

- Number of weights per output Feature Map:
NumFMI[i-1] x DimSten[i]?

- Total number of weights per layer: NumFM[i] x
Number of weights per output Feature Map

/ \
Q/MX Vector matrix multiply
g

NumFM[i-1]

(i) Nonlinear function - N.umber‘of operations per putput Feature Map: 2 x
PN~z i DimFM[i]?2 x Number of weights per output Feature
Map

- Total number of operations per layer: NumFM[i] x
Number of operations per output Feature Map = 2 x
DimFM[i]2x NumFM][i] x Number of weights per
output Feature Map = 2 x DimFM][i]? x Total number
of weights per layer

- Operations/Weight: 2 x DimFM[i]2

& “\ | ol
‘ / S;J*Y;YATJ-S‘ENﬁEﬁ 41 w"lﬁi

Recurrent Neural Network[{E#F)

 Popular for speech recognition on language translations

* RNNs can remember facts
- Long short-term memory (LSTM) network

“now” —{ LSTMo0 LSTM1 — ... —={ LSTMn |—

! ! !
‘is" —| LSTMo | —{ LSTM1 |~ ... —[LSTMn |-~

B! b

‘the” —[LSTMo |—{ LSTM1 |~ —-}—»
B! I

“time" —{ LSTMO LSTM1 |— ... —={ LSTMn |—

L i
<end_input> —~| LSTMoO l—-{ LSTM1 l—‘ - “‘momento”
§! B!

“momento” —=| LSTMO0 LSTM1 ... LSTMn “el”

! B! i
“el" — LSTMO |—{ LSTM1 |~ ... —{ LSTMn |- "es"

B! B! R

“es”" —=| LSTMO }-—— LSTM1 ...—= LSTMn “ahora”
| R :
b “ahora” —-| LSTMo |—~{ LSTM1 l—- . LSTMn <end_output>
! Pt

Time

"English to Spanish translation f
42 k G ,,
Whvd?

Recurrent Neural Network (cont.)

* Parameters:
— Number of weights per cell:

[LTMemoryin | [STMemoryin |
|

@‘\j_._('r,_,,‘\\ ?/1)9 Vector matrix muiltiply 3 X (3 X Dlm X Dlm)+(2 X Dlm
NN — X Dim) + (1 x Dim x Dim) =
T N C) Element-wise multiply 12 X D|m2
Output gate /-:\ .
weights . (+) Etement-wise addition — Number of operations for
= e A N () Noninear uncton the 5 vector-matrix
VMX } (if } o) e T .
\T/ & _/\ L - p— WUHZI IC|§>I|esfper .celilt. 2 X '
N e vt umber of weights per ce
\ . - L
Fov:g:e‘; :t:te |>;\HM/&1\\'_::/_:\ - 24 X D|m .
Input ‘ / = Ty [] — Number of operations for
._.\Mx_.@ / the 3 element-wise
% J multiplies and 1 addition
WA o vectors are all the size of
Input gate i} &S .
weights /}’- i the output): 4 x Dim
(oY’ Shrt term — Total number of operations
f —— per cell (5 vector-matrix
i multiplies a_md the 4 _
weights element-wise operations):
24 x Dim2+ 4 x Dim

' 1
LTMemoryout | [STMemoryout

— Operations/Weight: ~2

F X % 43 NS JG’%

SUN YAT-SEN UNIVERSITY

Example Domain: DNNs

* Batchesl[ilt]

- Reuse weights once fetched from memory across multiple
inputs
o Increases operational intensity
e Quantization[=1k]

— Numerical precision is less important for DNNs than for many
applications

o Use 8- or 16-bit fixed point

 Summary: need the following kernels
- Matrix-vector multiply

- Matrix-matrix multiply E"' i D

— Stencil g N

- RelLU I R T
- Sigmoid

— Hyperbolic tangent[X #h IE 1]
@ Fuxt . I

Tensor Processing Unit (TPU)

e Google’s first custom ASIC DSA for WSCs
- Its domain is the inference phase of DNNs
- It is programmed using the TensorFlow framework

— The first TPU was been deployed in 2015
o Originated as far back as 2006, to improve perf by 10x over GPUs

oo

o
.'I
N
I
N
N
-
.‘.
-
54
~

TPU V1 TPUv2
Launched in 2015 Launched in 2017
Inference only Inference and training

g‘w, i' ﬁ’ ,
\& vus ‘ svi}fv:fs'mﬁ ’% 45 u"lﬂq

TPU Chip Overview

* TPU chip is half the size of the other chips
— 28 nm process with a die size <331 mm?
— This is partially due to simplification of control logic

* Floor plan of TPU die

— 50%+ on arithmetic
an d memao ry Local Unlme?i:nt;mr for Matrix multiply unit
(96Kx256x8D = 24 MiB) || (296X256x8D = B4K MAC)
29% of chip 4%
D Host Accumulators ' D
A Intert 2% | | (4Kx256x32b =4 MiB) 6% || R
M - M
port - | Activation pipeline 6% port
ddr3 : ‘ ddr3
PCle 3%
* Interface 3% Misc. IO 1% | =

TPU Architecture[Ze#)

* A coprocessor on the PCle I/O bus
* A large software-managed on-chip memory

e The Matrix Unit: 65,536 (256x256)

8-bit multiply-accumulate units DDR3 DRAM chips

e 700 MHz clock rate _ Zeink ‘

e Peak: 92T operations/second DORS Interface 2522

o 65,536*2*700M |

e >25X as many MACs vs GPU % A

e >100X as many MACs vs CPU

e 4 MiB of on-chip Accumulator s ol wuter [l sysorc [ISR
memory ot e B JRREEEISTER

e 24 MiB of on-chip Unified Buffer g £ _—— SUEEEEEEEE
(activation memory) z -

e 3.5X as much on-chip memory
vs GPU Activation

e Two 2133MHz DDR3 DRAM =0 Normalize / Pool
channels i e

e 8 GiB of off-chip weight DRAM i
memory

#
(@D ¥ 47 Uid
s/ sovwrsevonversiy Wt ps: //www.anandtech.com/show/11749/hot-chips-google-tpu-performance-analysis-live-blog-3pm-pt-10pm-utc Py

https://www.anandtech.com/show/11749/hot-chips-google-tpu-performance-analysis-live-blog-3pm-pt-10pm-utc

TPU [SA[#E 4]

* The host CPU sends TPU instructions over the PCle bus
into an instruction buffer[{g 4 & i%]

— TPU has no PC, and it has no branch instructions

— 5 main (CISC) instructions (11 in total)

o Other 6: alternate host memory read/write, set configuration, two
versions of synchronization, interrupt host, debug-tag, nop and halt

* Instruction execution[$5 4 #447]
— Average clock cycles per instruction: > 10
— 4-stage overlapped execution, 1 instruction type/stage
o Execute other instructions while matrix multiplier busy
« Complexity in software[# /4 & 2]
— No branches, in-order issue
- SW controlled buffers, SW controlled pipeline synchronization

g El "E JL
g5 sov wrsmowmms https: //www.anandtech.com/show/11749/hot-chips-google-tpu-performance-analysis-live-blog-3pm-pt-10pm-utc ## ¥

https://www.anandtech.com/show/11749/hot-chips-google-tpu-performance-analysis-live-blog-3pm-pt-10pm-utc

TPU ISA (cont.)

e Read _Host_Memory
— Reads data from the CPU memory into the unified buffer

 Read Weights

— Reads weights from the Weight Memory into the Weight FIFO as
input to the Matrix Unit

* MatrixMultiply/Convolve

— Perform a matrix-matrix multiply, a vector-matrix multiply, an
element-wise matrix multiply, an element-wise vector multiply, or a
convolution from the Unified Buffer into the accumulators

o Takes a variable-sized B*256 input, multiplies it by a 256x256 constant
input, and produces a B*256 output, taking B pipelined cycles to complete

* Activate
— Computes activation function
* Write_Host_Memory

— Writes data from unified buffer
into host memory

IRCE

TPU Microarchitectureis e

* The u-arch philosophy of TPU is to
Multiply Unit busy

ceep the Matrix

— Hide the execution of the other insts by overlapping with the

MatrixMultiply inst

o Each of the other 4 insts have separate execution hw

* Problem: energy/time for repeated SRAM accesses of

matrix multiply

— Solution: “Systolic execution” to compute data on the fly in

-

:

|

B e—— s —— Data

|
|

Partial sums

|

‘%% %Dope : B -

buffers by pipelining control and data[fiksh k4 51 $47]

- inputs

weights

INSTEAD OF:
MEMORY 51
OPERATIONS
100ns

E HAVE:

MEMORY
1()Ons‘ \ 30 MOPS
pe|pe|PE|PE|PE| PE

PER SECOND

SSSSSSSS

ksl %) - KlGoogle TPUFRAFHI 4,
https://zhuanlan.zhihu.com/p/26522315

https://zhuanlan.zhihu.com/p/26522315

TPU Software[# 4

o

» Software stack had to be compatible with CPUs/GPUs[3#
— So that applications could be ported quickly

— The portion of the app run on the TPU is typically written using
TensorFlow and is compiled into an API that can run on CPUs/GPUs

* Like GPUs, the TPU stack is split into[47 /=]

— Kernel Driver: lightweight and handles only memory management
and interrupts

o Designed for long-term stability y e
— Use Space Driver: changes frequently, and — — L Google
L TensoirFIow /\ Applff:atlon)
handles the following J— S —
o Sets up and controls TPU execution R S"eamEx‘fC“m’AP' J |
o Reformats data into TPU order § User Space Driver
I \ ;
o Translates API calls into TPU insts and turns | Kernel Driver | ;

them into an app binary T E—

Tensor Processing Unit

A0BIS Nd.L

How TPU Follows the Guidelines

e Use dedicated memories

— 24 MB dedicated buffer, 4 MB accumulator buffers
e I[nvest resources in arithmetic units and dedicated
memories

- 60% of the memory and 250X the arithmetic units of a server-
class CPU

e Use the easiest form of parallelism that matches the
domain

— Exploits 2D SIMD parallelism

* Reduce the data size and type needed for the domain
— Primarily uses 8-bit integers

* Use a domain-specific programming language| == °
— Uses TensorFlow

A : =
M : -
dar3
3% |
RSITY

TPU Performance4:gg]

 Compare using six benchmarks

- Representing 95% of TPU inference workload in Google data
center in 2016

- Typically written in TensorFlow, pretty short (100-1500 LOCs)
* Chips/servers being compared

— CPU server: Intel 18-core, dual-socket Haswell; host server for
GPUs/TPUs

— GPU accelerator: Nvidia K80
Inference Datacenter Workload (95%)

Layers B TPU Ops /| TPU o
Name |[LOC i Weights| Weight | Batch s
Sunction = . | Deployed
FC |Conv|Vector|Pool| Total Byte Size
MLPO 0.1k] 5 5 ReLU | 20M 200 200 61%
MLPI1 | Ik | 4 4 ReLU SM 168 168 ¢
LSTMO| 1k | 24 34 sg [SIBMOId, [oo | 64 64
tanh
: d 29%
LSTMI|1.5k 37 19 56 |TENLC | 34M | 96 96
CNNO | 1k 16 16 | RelLU 8M 2888 8 50
J /0
CNNI [1k | 4 | 72 13| 89 | ReLU |[100M| 1750 32

23 Dhage

