
Advanced Computer Architecture

高级计算机体系结构

第18讲：Domain Specific Arch (2)
张献伟

xianweiz.github.io
DCS5637, 12/28/2022

https://xianweiz.github.io/

Review Questions
• Differences between coherence and consistency?

• What are possible values of data in TSO processors? Give
the ordering.

• What about PSO processors?

• Why DSA?

• DSA design guidelines?

• Target applications of TPU?
2

Dedicated memories, larger ALUs, easy parallelism, smaller data
size, domain-specific language.

Ending of Moore’s law; limited perf impr of general-purpose.

DNN: MLP, CNN, LSTM.

Same vs different location, eventually vs when, cache vs. mem, …

1: ①②③④

1: ①②③④/②①③④/②③①④
0: ②③④①

P0 P1

// flag = 0; data = 0;

data = 1; ①
flag = 1; ②

while (flag == 0); ③
print data; ④

TPU Architecture[架构]

• A coprocessor on the PCIe I/O bus
• A large software-managed on-chip memory

3
https://www.anandtech.com/show/11749/hot-chips-google-tpu-performance-analysis-live-blog-3pm-pt-10pm-utc

https://www.anandtech.com/show/11749/hot-chips-google-tpu-performance-analysis-live-blog-3pm-pt-10pm-utc

TPU Performance[性能]

4

• Compare using six benchmarks
− Representing 95% of TPU inference workload in Google data

center in 2016
− Typically written in TensorFlow, pretty short (100-1500 LOCs)

• Chips/servers being compared
− CPU server: Intel 18-core, dual-socket Haswell; host server for

GPUs/TPUs
− GPU accelerator: Nvidia K80

Roofline Performance Model[屋顶线]

• The roofline model was introduced in 2009
− Samuel Williams, Andrew Waterman, and David Patterson.

2009. Roofline: an insightful visual performance model for
multicore architectures. Commun. ACM

• It provides an easy way to get performance bounds for
compute and memory bandwidth bound computations
• It relies on the concept of Computational Intensity (CI)

− Sometimes also called Arithmetic or Operational Intensity

• The model provides a relatively simple way for
performance estimates based on the computational
kernel and hardware characteristics

− Performance [GF/s] = function (hardware and software
characteristics)

5
https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures_2015/APMA2821H-L_roof_line_model.pdf

https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures_2015/APMA2821H-L_roof_line_model.pdf

Roofline Performance Model(cont.)
• Basic idea

− Plot peak FP throughput as a function of arithmetic intensity
− Ties together FP performance and memory performance for a

target machine

• Arithmetic intensity[运算密度/算存比]
− Ratio of FP operations per byte of memory accessed

p (total #FP operations for a program) / (total data bytes transferred to
main memory during program execution)

6

Arithmetic Intensity[运算密度]

• 𝐴. 𝐼. = !
"

(FLOP/Byte)
− W: amount of work, i.e floating point operations required
− Q: memory transfer, i.e access from DRAM to lowest level cache

• Examples

7

for (i = 0; i < N; ++i)
z[i] = x[i]+y[i]

1 ADD
2 (8 byte) loads
1 (8 byte) write
AI = 1 / (2*8 + 8) = 1/24

for (i = 0; i < N; ++i)
z[i] = x[i]+y[i]*x[i]

1 ADD
1 MUL
2 (8 byte) loads
1 (8 byte) write
AI = 2 / (2*8 + 8) = 1/12

https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures_2015/APMA2821H-L_roof_line_model.pdf

https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures_2015/APMA2821H-L_roof_line_model.pdf

Example

• Amount of FLOPS: 3(N-2)
− For every i: out[i] = in[i-1]-2*in[i]+in[i+1] à 3 flop
− Loop over: for (int i=1; i<N-1; i++) à (N-2) repetitions

• Memory accesses Q: depends on cache size
− No cache (read directly from slow memory) à every data

accessed is counted
p 4 accesses x (N-2) repetitions x 4 bytes à A.I. = 3/16

− Perfect cache (infinite sized cache) à data is read & written
only once

p 2 accesses x (N-2) repetitions x 4 bytes à A.I. = 3/8

8

float in[N], out[N];
for (int i=1; i<N-1; i++)

out[i] = in[i-1]-2*in[i]+in[i+1];

https://www.cse-lab.ethz.ch/wp-content/uploads/2021/09/ex01_slides.pdf

https://www.cse-lab.ethz.ch/wp-content/uploads/2021/09/ex01_slides.pdf

Roofline Analysis
• ”Roofline” sets an upper bound on perf of a kernel

depending on its arithmetic intensity
− Think of arithmetic intensity as a pole that hits the roof

p Hits the flat part: perf is computationally limited
p Hits the slanted part: perf is ultimately limited by memory bandwidth

• Ridge point: the diagonal and horizontal roofs meet
− Far to right: only very intensive kernels can achieve max perf
− Far to left: almost any kernel can potentially hit max perf

9

Example
• Consider: for (i = 0; i < N; ++i) y[i] = a*x[i]+y[i]

− For each “i” :
p 1 addition, 1 multiplication
p 2 loads of 8 bytes each
p 1 store

• Execution on BlueGene/Q
− Peak 204.8 GFLOP/node

• Performance estimates:
− AI = 2/(3*8) = 1 / 12 1/12 < 7.11 → We are in the memory BW

limited area on the Roofline plot
− 7.11/(1/12)= 85.32
− 204.8 / 85.32 = 2.4 GF/s

10
https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures_2015/APMA2821H-L_roof_line_model.pdf

https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures_2015/APMA2821H-L_roof_line_model.pdf

Example (cont.)
• Peak double precision floating-point performance

− 204.8 GFLOPS

• Peak memory bandwidth
− 204.8/7.11 = 28.8 GB/s
− The steady state bandwidth potential of the memory in a

computer, not the pin bandwidth of the DRAM chips
− Common way is to measure it with benchmarks like STREAM

11http://www.hpcs.cs.tsukuba.ac.jp/~taisuke/tmp/ACHPC-LN9-4cut.pdf

Bandwidth

Sequoia

http://www.hpcs.cs.tsukuba.ac.jp/~taisuke/tmp/ACHPC-LN9-4cut.pdf

TPU Roofline Performance
• TPU: its ridge point is far to the right at 1350

− CNN1 is much further below its Roofline than the other DNNs
p Waiting for weights to be loaded into the matrix unit

− Ridge point comparison:
p CPU: 13, GPU: 9 à better balanced, but perf a lot lower

12

Cost-Performance
• Cost metric: performance per watt

− “Total”: includes the power consumed by the host CPU server
when calculating perf/watt for the GPU and TPU

− “Incremental”: subtracts the host CPU power from the total

• Total: GPU is 2.1x CPU, TPU is 34x CPU
• Incremental: TPU is 83x CPU, 29x GPU

13
https://www.extremetech.com/computing/247199-googles-dedicated-tensorflow-processor-tpu-makes-hash-intel-nvidia-inference-workloads

https://www.extremetech.com/computing/247199-googles-dedicated-tensorflow-processor-tpu-makes-hash-intel-nvidia-inference-workloads

TPU Generations

14
https://www.gwern.net/docs/ai/scaling/hardware/2021-jouppi.pdf

https://www.gwern.net/docs/ai/scaling/hardware/2021-jouppi.pdf

TPU Generations (cont.)

15

Microsoft Catapult
• Project Catapult

− To transform cloud computing by
augmenting CPUs with an
interconnected and configurable
compute layer composed of
programmable silicon

• FPGAs offer a unique
combination of speed and
flexibility

− FPGAs could deliver efficiency and
performance without the cost,
complexity, and risk of developing
custom ASICs

− The FPGA can act as a local
compute accelerator, an inline
processor, or a remote accelerator
for distributed computing

16
https://www.microsoft.com/en-us/research/project/project-catapult/

https://www.microsoft.com/en-us/research/project/project-catapult/

Microsoft Catapult (cont.)
• Needed to be general purpose

and power efficient
− Uses FPGA PCIe board with

dedicated 20 Gbps network in 6 x
8 torus

− Each of the 48 servers in half the
rack has a Catapult board

− Limited to 25 watts
− 32 MB Flash memory
− Two banks of DDR3-1600 (11

GB/s) and 8 GB DRAM
− FPGA (unconfigured) has 3962 18-

bit ALUs and 5 MB of on-chip
memory

− Programmed in Verilog RTL
− Shell is 23% of the FPGA

17

Catapult Applications

18

• The processing element (PE) of
the CNN Accelerator for Catapult

• The architecture of FPGA
implementation of the Feature
Extraction stage in search
acceleration

How Catapult Follows the Guidelines
• Use dedicated memories

− 5 MB dedicated memory

• Invest resources in arithmetic units and dedicated
memories

− 3926 ALUs

• Use the easiest form of parallelism that matches the
domain

− 2D SIMD for CNN, MISD parallelism for search scoring

• Reduce the data size and type needed for the domain
− Uses mixture of 8-bit integers and 64-bit floating-point

• Use a domain-specific programming language
− Uses Verilog RTL; Microsoft did not follow this guideline

19

Advanced Computer Architecture

高级计算机体系结构

第18讲：CXL & Computing
张献伟

xianweiz.github.io
DCS5637, 12/28/2022

https://xianweiz.github.io/

OUTLINE

21

Introduction

Big Memory System

Challenges and Opportunities

Summary

Applications Keep Growing
• High-performance Computing

− FLOPS: mega - giga - tera - petra – exa

• Artificial Intelligence
− More complicated model: AlexNet - ResNet - BERT – GPT

• Big Data
− Exponential growth on volume

22

System Evolution
• Computing

− Scalar à vector
− Homogeneous à heterogeneous: CPU +

GPU/accelerator/FPGA/DPU

• Memory
− DRAM, GDDR, HBM
− HDD, SSD, NVM

• Interconnect
− Intra-node: PCI-e, CAPI/OpenCAPI, CCIX, UPI/QPI, NVLink, Gen-Z
− Inter-node: Ethernet, InfiniBand, Omnipath, HPC

Ethernet/Slingshot

23

Memory Wall
• Memory lags behind compute

− Bandwidth wall: improvement rate in processing far exceeds
that of memory

− Capacity wall: growing imbalance in compute-memory ratio in
data centers

• Memory subsystem becomes one of the most crucial
system-level performance bottlenecks

24

https://www.top500.org/lists/top500/

Memory Demands
• Large capacity

− To meet apps need of large space
• Fast access

− Low latency, higher bandwidth
• Unified

− Heterogeneous processors with own memory
• Scalable

− Rack scale, multi-node
• Easy to use programming models, efficient management

• Large-scale Memory Pooling
− Unified memory space across nodes

25

Existing Solutions
• RDMA-based distributed memory

− Based on Ethernet/IB

• Unified memory
− Enabled with high-speed interconnects, e.g., NVLink, Infinity

Fabric
− Coherent memory space between CPUs and GPUs
− Already used in supercomputing

26

DRAM DRAMRDMA

…

Unified Memory Space

Memory-hungry Applications

Node-1 Node-N

OUTLINE

27

Introduction

Big Memory System

Challenges and Opportunities

Summary

The Enabler: Compute Express Link (CXL)

28

• Open industry standard processor interconnect
− Unified, coherent memory space between the CPU and any

memory attached CXL device
− High-bandwidth, low-latency connection between host and

devices including accelerators, memory expansion, and smart
I/O devices

− Utilizes PCI Express 5.0 physical layer infrastructure and the
PCIe alternate protocol

− Designed to meet demanding needs of HPC work in AI, ML,
communication systems through enablement of coherency and
memory semantics across heterogeneous processing and
memory systems

Compute Express Link (cont.)
• The CXL transaction layer is comprised of three

dynamically multiplexed sub-protocols on a single link
− CXL.io: functionally equivalent to the PCIe 5.0 protocol
− CXL.cache: for devices to cache data from the CPU memory
− CXL.memory: for processor to access the memory of attached

devices

29

CXL-based Memory
• Unified sharing memory between host and devices

− No longer use host memory as an intermediary for
communication

• Scalable to provide more memory types and capacity
− Just attached via CXL fabric
− GFAM: Global Fabric Attached Memory

30

CXL-based Memory (cont.)
• Memory semantic

− Handles all communications as memory operations such as
load/store, put/get and atomic operations typically used by a
processor

• Memory speed
− Communications at the speed of memory, i.e., sub-microsecond

latencies

31

CXL-based System
• Multi-tiered switching

− Enables the implementation of switch fabrics
− Switches can connect to other switches

• Rack-scale memory fabric
− Fine-grained resource sharing across multiple domains

32

FPGA NIC FPGA Memory

CXL 3.0 Switch CXL 3.0 Switch

CXL 3.0 Switch CXL 3.0 Switch

CXL 3.0 SwitchCXL 3.0 Switch

FPGA Host FPGA Memory

Node

Host

Node

Host

Feature: Fast Access
• As memory bus, CXL is slower than DRAM

− Contributing factors: CXL phy/ctr - 40ns, Retimer - 20 ns,
Propagation - 7n, EMC - 20ns

• As inter-node link, CXL is much faster than RDMA
− Particularly at small granularities

33

80ns ~ 100ns

Memory Bus

CPU
DRAM

DRAM

DRAM DRAM

NVM NVM

CXL Bus

CXL BusMemory Bus

170ns ~ 250ns[2]

Feature: Data Coherence
• Coherency between the CPU memory space and memory

on attached devices
− Allows resource sharing for higher performance
− Reduced complexity and lower overall system cost
− Permits to focus on target workloads vs. redundant memory

management
− Every processor in the rack is on the same page about what is

happening simultaneously

34

CPU CPU

CPU CPU

XPU XPU

XPU XPU

CXL CXLCXL

Feature: Resource Disaggregation
• Data centers to scale out differently with dis-aggregation

of resources with separate pools of memory, storage, and
accelerators

− You just grab what you need and compose your resources
based on the workload characteristics

35

OUTLINE

36

Introduction

Big Memory System

Challenges and Opportunities

Summary

Big Memory Computing
• Compute

− Enhanced movement of operands and results between
processors

− Heterogeneous programming can be easier with unified
memory

• Memory
− Boosted capacity and bandwidth, highly scalable

• Software
− Critical to maximize resource utilization and bridge applications

to hardware

37

Application for Big Memory
• Q: How to adapt applications to the system?

• Key features should be utilized to accelerate applications
− Unified, coherent memory space between host and devices

p Including accelerators, memory expansion, and smart I/O devices
− Fine-grained, memory-semantic data sharing are now possible

p Assessing and improving operations in real time

38

Application for Big Memory (cont.)
• Develop new applications

− Eased programming models, via simplified mem management
− Mostly use load/store for data access, in-mem data exchange

• Migrate legacy applications
− Compiling and runtime support to translate the deprecated

usages. E.g.,
p Get rid of explicit data copies, e.g., cudaMemcpyDeviceToHost()
p IO and RDMA to load/store

39

Manage the Big Memory
• Q: How to manage the huge size memory?

• Current virtual memory system and allocators are
insufficient

− 4KB paging? Too fine-grained, intolerable translation overheads
− 4MB paging? Too coarse-grained, wasted memory space

• Memory heterogeneity should be well utilized
− DRAM: low latency, high bandwidth, high cost
− NVM: high latency, low bandwidth, low cost

40

Manage the Big Memory (cont.)
• File-system based management

− Memory-semantic file access
− Transparent hybrid memory allocation
− Shared memory between process and file system

p In-situ data processing within file system

41
https://pages.cs.wisc.edu/~swift/papers/hotos-o1mem.pdf

https://pages.cs.wisc.edu/~swift/papers/hotos-o1mem.pdf

Access Delay
• Q: How to effectively use w.r.t the access delay?

• CXL bus is slower than DRAM
− Inter-node connection can be even slower with more nodes

p Switch, signal skew
− Applications have varying delay tolerance

p Some may seriously suffer from performance loss

42

Access Delay (cont.)
• Granularity-aware access

− The high-speed link favors fine-grained data transfer
− For larger size, PCIe or RDMA can still be a better choice

• NUMA- and application-aware data placement
− Local or remote?
− Sensitive or not?

43

Coherence Guarantee
• Q: How to guarantee coherence in an efficient way?

• Coherence overhead is high among massive entities
− Strict coherence requires the data update to be seen by all

p May lead to frequent invalidations
− The overhead can be unacceptably high in large data center

44

Coherence Guarantee (cont.)
• Coherence bias

− Allows a device to access its memory coherently without
visiting the processor

p Device bias: pages being used exclusively by the device
p Host bias: pages being used by the host or shared between host and

device
− Zone-based coherence

p Strict coherence in small zones, use SW to control coherence in large
regions

45

Disaggregated Resources
• Q: How to configure and adjust the composable

resources?

• No one-size-fits-all setting
− Applications have varying resource demands
− Demanded resources are dynamically changing

46

Disaggregated Resources (cont.)
• Compiler or loader estimates the compute and memory

demands
− Compose the initial resources for the application

• Runtime monitors the dynamic behaviors
− Adjust the resource amounts

• Intertwining effects should be taken into account
− Application characteristics are varying

p Co-existing or conflicting?

47

OUTLINE

48

Introduction

Big Memory System

Challenges and Opportunities

Summary

Summary
• Ever high demands on memory capacity and bandwidth

− CXL-based memory pooling is the promising solution

• CXL-based memory pooling is the promising direction
− Unified memory, easing programming burden
− High-speed comparable to memory bus, enabling memory

semantic access
− Also allows resource disaggregation and composition

• Open issues to be explored
− Application porting
− Software-level management
− Performance optimizations (latency, coherence, etc)
− …

49

