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Review Questions
• Differences between coherence and consistency?

• What are possible values of data in TSO processors? Give 
the ordering.

• What about PSO processors?

• Why DSA?

• DSA design guidelines?

• Target applications of TPU?
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Dedicated memories, larger ALUs, easy parallelism, smaller data
size, domain-specific language.

Ending of Moore’s law; limited perf impr of general-purpose.

DNN: MLP, CNN, LSTM.

Same vs different location, eventually vs when, cache vs. mem, … 

1: ①②③④

1: ①②③④/②①③④/②③①④
0: ②③④①

P0 P1

// flag = 0; data = 0;

data = 1;  ①
flag = 1;   ②

while (flag == 0); ③
print data;            ④



TPU Architecture[架构]

• A coprocessor on the PCIe I/O bus
• A large software-managed on-chip memory
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TPU Performance[性能]
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• Compare using six benchmarks
− Representing 95% of TPU inference workload in Google data 

center in 2016
− Typically written in TensorFlow, pretty short (100-1500 LOCs)

• Chips/servers being compared
− CPU server: Intel 18-core, dual-socket Haswell; host server for 

GPUs/TPUs
− GPU accelerator: Nvidia K80



Roofline Performance Model[屋顶线]

• The roofline model was introduced in 2009
− Samuel Williams, Andrew Waterman, and David Patterson. 

2009. Roofline: an insightful visual performance model for 
multicore architectures. Commun. ACM

• It provides an easy way to get performance bounds for 
compute and memory bandwidth bound computations
• It relies on the concept of Computational Intensity (CI)

− Sometimes also called Arithmetic or Operational Intensity

• The model provides a relatively simple way for 
performance estimates based on the computational 
kernel and hardware characteristics

− Performance [GF/s] = function (hardware and software 
characteristics)
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Roofline Performance Model(cont.)
• Basic idea

− Plot peak FP throughput as a function of arithmetic intensity
− Ties together FP performance and memory performance for a 

target machine

• Arithmetic intensity[运算密度/算存比]
− Ratio of FP operations per byte of memory accessed

p (total #FP operations for a program) / (total data bytes transferred to 
main memory during program execution)
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Arithmetic Intensity[运算密度]

• 𝐴. 𝐼. = !
"

(FLOP/Byte)
− W: amount of work, i.e floating point operations required
− Q: memory transfer, i.e access from DRAM to lowest level cache

• Examples
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for (i = 0; i < N; ++i)
z[i] = x[i]+y[i] 

1 ADD
2 (8 byte) loads
1 (8 byte) write 
AI = 1 / (2*8 + 8) = 1/24 

for (i = 0; i < N; ++i)
z[i] = x[i]+y[i]*x[i] 

1 ADD 
1 MUL
2 (8 byte) loads
1 (8 byte) write 
AI = 2 / (2*8 + 8) = 1/12

https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures_2015/APMA2821H-L_roof_line_model.pdf

https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures_2015/APMA2821H-L_roof_line_model.pdf


Example

• Amount of FLOPS: 3(N-2)
− For every i: out[i] = in[i-1]-2*in[i]+in[i+1] à 3 flop
− Loop over: for (int i=1; i<N-1; i++) à (N-2) repetitions

• Memory accesses Q: depends on cache size
− No cache (read directly from slow memory) à every data 

accessed is counted
p 4 accesses x (N-2) repetitions x 4 bytes à A.I. = 3/16

− Perfect cache (infinite sized cache) à data is read & written 
only once

p 2 accesses x (N-2) repetitions x 4 bytes à A.I. = 3/8
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float in[N], out[N];
for (int i=1; i<N-1; i++)

out[i] = in[i-1]-2*in[i]+in[i+1]; 

https://www.cse-lab.ethz.ch/wp-content/uploads/2021/09/ex01_slides.pdf

https://www.cse-lab.ethz.ch/wp-content/uploads/2021/09/ex01_slides.pdf


Roofline Analysis
• ”Roofline” sets an upper bound on perf of a kernel 

depending on its arithmetic intensity
− Think of arithmetic intensity as a pole that hits the roof

p Hits the flat part: perf is computationally limited
p Hits the slanted part: perf is ultimately limited by memory bandwidth

• Ridge point: the diagonal and horizontal roofs meet
− Far to right: only very intensive kernels can achieve max perf
− Far to left: almost any kernel can potentially hit max perf
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Example
• Consider: for (i = 0; i < N; ++i) y[i] = a*x[i]+y[i]

− For each “i” :
p 1 addition, 1 multiplication
p 2 loads of 8 bytes each
p 1 store

• Execution on BlueGene/Q
− Peak 204.8 GFLOP/node 

• Performance estimates:
− AI = 2/(3*8) = 1 / 12 1/12 < 7.11 → We are in the memory BW 

limited area on the Roofline plot
− 7.11/(1/12)= 85.32
− 204.8 / 85.32 = 2.4 GF/s
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Example (cont.)
• Peak double precision floating-point performance

− 204.8 GFLOPS

• Peak memory bandwidth
− 204.8/7.11 = 28.8 GB/s
− The steady state bandwidth potential of the memory in a 

computer, not the pin bandwidth of the DRAM chips
− Common way is to measure it with benchmarks like STREAM

11http://www.hpcs.cs.tsukuba.ac.jp/~taisuke/tmp/ACHPC-LN9-4cut.pdf

Bandwidth

Sequoia

http://www.hpcs.cs.tsukuba.ac.jp/~taisuke/tmp/ACHPC-LN9-4cut.pdf


TPU Roofline Performance
• TPU: its ridge point is far to the right at 1350

− CNN1 is much further below its Roofline than the other DNNs
p Waiting for weights to be loaded into the matrix unit

− Ridge point comparison:
p CPU: 13, GPU: 9 à better balanced, but perf a lot lower
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Cost-Performance
• Cost metric: performance per watt

− “Total”: includes the power consumed by the host CPU server 
when calculating perf/watt for the GPU and TPU

− “Incremental”: subtracts the host CPU power from the total

• Total: GPU is 2.1x CPU, TPU is 34x CPU
• Incremental: TPU is 83x CPU, 29x GPU
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https://www.extremetech.com/computing/247199-googles-dedicated-tensorflow-processor-tpu-makes-hash-intel-nvidia-inference-workloads

https://www.extremetech.com/computing/247199-googles-dedicated-tensorflow-processor-tpu-makes-hash-intel-nvidia-inference-workloads


TPU Generations

14
https://www.gwern.net/docs/ai/scaling/hardware/2021-jouppi.pdf

https://www.gwern.net/docs/ai/scaling/hardware/2021-jouppi.pdf


TPU Generations (cont.)
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Microsoft Catapult
• Project Catapult

− To transform cloud computing by 
augmenting CPUs with an 
interconnected and configurable 
compute layer composed of 
programmable silicon

• FPGAs offer a unique 
combination of speed and 
flexibility

− FPGAs could deliver efficiency and 
performance without the cost, 
complexity, and risk of developing 
custom ASICs

− The FPGA can act as a local 
compute accelerator, an inline 
processor, or a remote accelerator 
for distributed computing
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https://www.microsoft.com/en-us/research/project/project-catapult/
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Microsoft Catapult (cont.)
• Needed to be general purpose 

and power efficient
− Uses FPGA PCIe board with 

dedicated 20 Gbps network in 6 x 
8 torus

− Each of the 48 servers in half the 
rack has a Catapult board 

− Limited to 25 watts
− 32 MB Flash memory
− Two banks of DDR3-1600 (11 

GB/s) and 8 GB DRAM
− FPGA (unconfigured) has 3962 18-

bit ALUs and 5 MB of on-chip 
memory

− Programmed in Verilog RTL
− Shell is 23% of the FPGA
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Catapult Applications
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• The processing element (PE) of 
the CNN Accelerator for Catapult

• The architecture of FPGA 
implementation of the Feature 
Extraction stage in search 
acceleration



How Catapult Follows the Guidelines
• Use dedicated memories

− 5 MB dedicated memory

• Invest resources in arithmetic units and dedicated 
memories

− 3926 ALUs

• Use the easiest form of parallelism that matches the 
domain

− 2D SIMD for CNN, MISD parallelism for search scoring

• Reduce the data size and type needed for the domain 
− Uses mixture of 8-bit integers and 64-bit floating-point

• Use a domain-specific programming language
− Uses Verilog RTL; Microsoft did not follow this guideline
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OUTLINE
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Applications Keep Growing
• High-performance Computing

− FLOPS: mega - giga - tera - petra – exa

• Artificial Intelligence
− More complicated model: AlexNet - ResNet - BERT – GPT

• Big Data
− Exponential growth on volume
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System Evolution
• Computing

− Scalar à vector
− Homogeneous à heterogeneous: CPU + 

GPU/accelerator/FPGA/DPU

• Memory
− DRAM, GDDR, HBM
− HDD, SSD, NVM

• Interconnect
− Intra-node: PCI-e, CAPI/OpenCAPI, CCIX, UPI/QPI, NVLink, Gen-Z 
− Inter-node: Ethernet, InfiniBand, Omnipath, HPC 

Ethernet/Slingshot
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Memory Wall
• Memory lags behind compute

− Bandwidth wall: improvement rate in processing far exceeds 
that of memory

− Capacity wall: growing imbalance in compute-memory ratio in 
data centers

• Memory subsystem becomes one of the most crucial 
system-level performance bottlenecks
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https://www.top500.org/lists/top500/



Memory Demands
• Large capacity

− To meet apps need of large space
• Fast access

− Low latency, higher bandwidth
• Unified

− Heterogeneous processors with own memory
• Scalable

− Rack scale, multi-node
• Easy to use programming models, efficient management

• Large-scale Memory Pooling
− Unified memory space across nodes
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Existing Solutions
• RDMA-based distributed memory

− Based on Ethernet/IB

• Unified memory
− Enabled with high-speed interconnects, e.g., NVLink, Infinity 

Fabric
− Coherent memory space between CPUs and GPUs
− Already used in supercomputing
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DRAM DRAMRDMA

…

Unified Memory Space

Memory-hungry Applications

Node-1 Node-N
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The Enabler: Compute Express Link (CXL)
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• Open industry standard processor interconnect
− Unified, coherent memory space between the CPU and any 

memory attached CXL device
− High-bandwidth, low-latency connection between host and 

devices including accelerators, memory expansion, and smart 
I/O devices

− Utilizes PCI Express 5.0 physical layer infrastructure and the 
PCIe alternate protocol

− Designed to meet demanding needs of HPC work in AI, ML, 
communication systems through enablement of coherency and 
memory semantics across heterogeneous processing and 
memory systems



Compute Express Link (cont.)
• The CXL transaction layer is comprised of three 

dynamically multiplexed sub-protocols on a single link
− CXL.io: functionally equivalent to the PCIe 5.0 protocol 
− CXL.cache: for devices to cache data from the CPU memory 
− CXL.memory: for processor to access the memory of attached 

devices
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CXL-based Memory
• Unified sharing memory between host and devices

− No longer use host memory as an intermediary for 
communication

• Scalable to provide more memory types and capacity
− Just attached via CXL fabric
− GFAM: Global Fabric Attached Memory
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CXL-based Memory (cont.)
• Memory semantic

− Handles all communications as memory operations such as 
load/store, put/get and atomic operations typically used by a 
processor

• Memory speed
− Communications at the speed of memory, i.e., sub-microsecond 

latencies
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CXL-based System
• Multi-tiered switching

− Enables the implementation of switch fabrics
− Switches can connect to other switches

• Rack-scale memory fabric
− Fine-grained resource sharing across multiple domains
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FPGA NIC FPGA Memory

CXL 3.0 Switch CXL 3.0 Switch

CXL 3.0 Switch CXL 3.0 Switch

CXL 3.0 SwitchCXL 3.0 Switch

FPGA Host FPGA Memory

Node

Host

Node

Host



Feature: Fast Access
• As memory bus, CXL is slower than DRAM

− Contributing factors: CXL phy/ctr - 40ns, Retimer - 20 ns, 
Propagation - 7n, EMC - 20ns

• As inter-node link, CXL is much faster than RDMA 
− Particularly at small granularities
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80ns ~ 100ns

Memory Bus

CPU
DRAM

DRAM

DRAM DRAM

NVM NVM

CXL Bus

CXL BusMemory Bus

170ns ~ 250ns[2]



Feature: Data Coherence
• Coherency between the CPU memory space and memory 

on attached devices
− Allows resource sharing for higher performance
− Reduced complexity and lower overall system cost
− Permits to focus on target workloads vs. redundant memory 

management
− Every processor in the rack is on the same page about what is 

happening simultaneously
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CPU CPU

CPU CPU

XPU XPU

XPU XPU

CXL CXLCXL



Feature: Resource Disaggregation
• Data centers to scale out differently with dis-aggregation 

of resources with separate pools of memory, storage, and 
accelerators

− You just grab what you need and compose your resources 
based on the workload characteristics
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Big Memory Computing
• Compute

− Enhanced movement of operands and results between 
processors

− Heterogeneous programming can be easier with unified 
memory

• Memory
− Boosted capacity and bandwidth, highly scalable

• Software
− Critical to maximize resource utilization and bridge applications 

to hardware
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Application for Big Memory
• Q: How to adapt applications to the system?

• Key features should be utilized to accelerate applications 
− Unified, coherent memory space between host and devices 

p Including accelerators, memory expansion, and smart I/O devices
− Fine-grained, memory-semantic data sharing are now possible 

p Assessing and improving operations in real time
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Application for Big Memory (cont.)
• Develop new applications

− Eased programming models, via simplified mem management
− Mostly use load/store for data access, in-mem data exchange

• Migrate legacy applications
− Compiling and runtime support to translate the deprecated 

usages. E.g.,
p Get rid of explicit data copies, e.g., cudaMemcpyDeviceToHost()
p IO and RDMA to load/store
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Manage the Big Memory
• Q: How to manage the huge size memory?

• Current virtual memory system and allocators are 
insufficient

− 4KB paging? Too fine-grained, intolerable translation overheads 
− 4MB paging? Too coarse-grained, wasted memory space 

• Memory heterogeneity should be well utilized
− DRAM: low latency, high bandwidth, high cost
− NVM: high latency, low bandwidth, low cost

40



Manage the Big Memory (cont.)
• File-system based management

− Memory-semantic file access
− Transparent hybrid memory allocation
− Shared memory between process and file system

p In-situ data processing within file system

41
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Access Delay
• Q: How to effectively use w.r.t the access delay?

• CXL bus is slower than DRAM
− Inter-node connection can be even slower with more nodes 

p Switch, signal skew
− Applications have varying delay tolerance

p Some may seriously suffer from performance loss
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Access Delay (cont.)
• Granularity-aware access

− The high-speed link favors fine-grained data transfer
− For larger size, PCIe or RDMA can still be a better choice

• NUMA- and application-aware data placement
− Local or remote?
− Sensitive or not?
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Coherence Guarantee
• Q: How to guarantee coherence in an efficient way?

• Coherence overhead is high among massive entities
− Strict coherence requires the data update to be seen by all

p May lead to frequent invalidations
− The overhead can be unacceptably high in large data center
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Coherence Guarantee (cont.)
• Coherence bias

− Allows a device to access its memory coherently without 
visiting the processor

p Device bias: pages being used exclusively by the device
p Host bias: pages being used by the host or shared between host and 

device
− Zone-based coherence

p Strict coherence in small zones, use SW to control coherence in large 
regions
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Disaggregated Resources
• Q: How to configure and adjust the composable 

resources?

• No one-size-fits-all setting
− Applications have varying resource demands
− Demanded resources are dynamically changing
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Disaggregated Resources (cont.)
• Compiler or loader estimates the compute and memory 

demands
− Compose the initial resources for the application

• Runtime monitors the dynamic behaviors
− Adjust the resource amounts

• Intertwining effects should be taken into account
− Application characteristics are varying

p Co-existing or conflicting?
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Summary
• Ever high demands on memory capacity and bandwidth 

− CXL-based memory pooling is the promising solution

• CXL-based memory pooling is the promising direction 
− Unified memory, easing programming burden
− High-speed comparable to memory bus, enabling memory 

semantic access
− Also allows resource disaggregation and composition

• Open issues to be explored
− Application porting
− Software-level management
− Performance optimizations (latency, coherence, etc)
− …
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